A review: Cataract, a common ocular complication in Diabetes

Authors

  • Mital Bhadania Sr. Product Manager, McLeon Pharmaceuticals, Gandhinagar, Gujarat.
  • Falguni Majmudar Department of Pharmacology, Smt. NHL Municipal Medical College, Ahmedabad

DOI:

https://doi.org/10.7439/ijpr.v6i6.3286

Keywords:

Diabetes mellitus, Cataract, Aldose Reductase, Polyol Pathway, Sorbitol

Abstract

With increasing prevalence of diabetes and its associated complications is a priority of health service globally. Diabetic ocular complications are most common in both type-1 and type-2 diabetes, considering the fifth most common cause of legal blindness. According to WHO, cataract is 33% of all type of visual impairment. Simply diabetic cataracts are characterized by cortical or posterior subcapsular opacities. Aldose reductase and polyol are responsible for diabetes ocular complications. Intracellular accumulation of sorbitol leads to osmotic stress resulting in the formation of lens opacities. Several clinical studies investigated the role of phacoemulsification surgery and its post surgery complications. Researcher are trying to develop aldose reductase inhibitors and antioxidents, may be effective treatment to prevent or cure diabetes cataract.

Downloads

Download data is not yet available.

References

World Health Organization. Global Status Report on Noncommunicable Diseases, 2014n. Available from http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_ eng.pdf?ua=1 accessed May 26, 2015.

R. Dobson, R. Whittaker, Y. Jiang et al. Text message-based diabetes self-management support (SMS4BG): study protocol for a randomised controlled trial. Trials. 17 (2016) 1-10.

B. Levitan, Y. Song, E. Ford et al. Is nondiabetic hyperglycaemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch. Intern. Med. 164 (2004) 2147?55.

J. Harding, M. Egerton, R. van et al. Diabetes, glaucoma, sex, and cataract: analysis of combined data fromtwo case control studies. British. J. Ophthalmol. 77 (1993) 2

H. Kahn, H. Leibowitz, J. Ganley et al. The Framingham eye study. II. Association of ophthalmic pathology with single variables previouslymeasured in the Framingham heart study. Am. J. Epidemiol. 106 (1977) 33

P. Guillausseau, P. Massin, M. Charles, et al. Glycaemic control and development of retinopathy in type 2 diabetes mellitus: a longitudinal study. DiabeticMedicine. 15 (1998) 151

R. Turner. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet. 352 (9131) (1998) 837

I. Stratton, E. Kohner, S. Aldington et al. UKPDS 50: risk factors for incidence and progression of retinopathy in type II diabetes over 6 years from diagnosis. Diabetologia. 44 (2) (2001) 156

World Health Organization. http://www.who.int/topics/cataract/en/ Accessed 7 April 2016.

B. Klein, R. Klein, S. Moss. Incidence of cataract surgery in the Wisconsin Epidemiologic Study of Diabetic Retinopathy. Am. J. Ophthalmol. 119 (1995) 295

B. Klein, R. Klein, Q. Wang et al. Older-onset diabetes and lens opacities. The Beaver Dam Eye Study. Ophthalm. Epid. 2 (1995) 49-55.

A. Hamilton, M. Ulbig, P. Polkinghorne. Epidemiology of diabetic retinopathy. In: Hamilton AM, Ulbig MW and Polkinghorne P Management of Diabetic Retinopathy. London: BMJ Publishing Group. (1996) 1-15.

G. Tabin, M. Chen, L. Espandar. Cataract surgery for the developing world. Curr. Opin. Ophthalmol. 19(1) (2008) 55

J. Harding. Recent studies of risk factors and protective factors for cataract. Curr. Opin. Ophthalmol. 8 (1997) 46

S. Kato, A. Shiokawa, H. Fukushima et al. Glycemic control and lens transparency in patients with type 1 diabetes mellitus. Am. J. Ophthalmol. 131 (2001) 301-4.

S. Kato, T. Oshika, J. Numaga et al. Influence of rapid glycemic control on lens opacity in patients with diabetes mellitus. Am. J. Ophthalmol. 130 (2000) 354-5.

H. Hers. Le Mechanisme de la transformation de glucose en fructose par les vesicules seminales. Biochim. Biophys. Acta. 22 (1956) 202

H Van. Formation of polyols by the lens of the rat with

J. Kinoshita. Mechanisms initiating cataract formation. Proctor lecture Inv. Ophthalmol. 13 (10) (1974) 713

J. Kinoshita, S. Fukushi, P. Kador et al. Aldose reductase in diabetic complications of the eye. Metabolism. 28 (4) (1979) 462

P. Kador, J. Kinoshita. Diabetic and galactosaemic cataracts. Ciba. Foundation. Symposium. 106 (1984) 110

R. Neil, J. Williamson, M. Brownlee. Hyperglycemia, Diabetes and Vascular Disease. Spriger new York (1992).

P. Huang, Z. Jiang, S. Teng et al. Synergism between phospholipase D2 and sorbitol accumulation in diabetic cataract formation through modulation of NaK-ATPase activity and osmotic stress. Experi. Eye Res. 83 (4) (2006) 939

M. Datiles, P. Kador. Type I diabetic cataract. Archi. Ophthalmol. 117 (2) (1999) 284

Y. Kumamoto, Y. Takamura, E. Kubo et al. Epithelial cell density in cataractous lenses of patients with diabetes: association with erythrocyte aldose reductase. Experi. Eye. Research. 85 (3) (2007) 393

M. Mulhern, C. Madson, A. Danford et al. The unfolded protein response in lens epithelial cells fromgalactosemic rat lenses. Inv. Ophthalmol. Visual. Science. 47 (9) (2006) 3951

R. Elanchezhian, P. Palsamy, C. Madson et al. Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells. Cell. Death. Disease. 3 (2012) e301.

K. Ornek, F. Karel, Z. Buyukbingol. May nitric oxide molecule have a role in the pathogenesis of human cataract? Experi. Eye. Research. 76 (1) (2003) 23

S. Chiou, C. Chang, C Chou et al. Increased nitric oxide levels in aqueous humor of diabetic patients with neovascular glaucoma. Diab. Care. 22 (5) (1999) 861

A. Stitt. The Maillard reaction in eye diseases. Annals. New York. Acad. Sci. 1043 (2005) 582

A. Behndig, K. Karlsson, A. Reaume et al. In vitro photochemical cataract in mice lacking copper-zinc superoxide dismutase. Free. Radical. Bio. Med. 31(6) (2001) 738

E. Olofsson, S. Marklund, K. Karlsson et al. In vitro glucose-induced cataract in copper-zinc superoxide dismutase null mice. Exp. Eye. Res. 81 (6) (2005) 639

E. Olofsson, S. Marklund, A. Behndig et al. Enhanced diabetes-induced cataract in copper-zinc superoxide dismutase-null mice. Invest. Ophthalmol. Visual. Sci. 50 (6) (2009) 2913

J. Lemagne, O. Kallay. Astigmatism after a large scleral pocket incision in extracapsular cataract extraction. J. Cataract. Refractive. Surg. 19 (1993) 613-15.

A. Landen, H. Preston, R. Brian. Outcomes of manual extracapsular versus phacoemulsification cataract extraction by beginner resident surgeons. J. Cataract. Refractive. Surg. 39 (11) (2013) 1698

J. Goldstein. How a jolt and a bolt in a dentist

S. Sadiq, A. Chatterjee, S. Vernon. Progression of diabetic retinopathy and rubeotic glaucoma following cataract surgery. Eye. 9 (6) (1995) 728

P. Tranos, S. Wickremasinghe, N. Stangos et al. Survey. Ophthalmol. 49 (5) (2004) 470

K. Wang, C. Cheng. Central retinal thickness changes and visual outcomes following uncomplicated small-incision phacoemulsification cataract surgery in diabetic without retinopathy patients and nondiabetic patients. Taiwan. J. Ophthalmol. 4 (2014) 33-39.

Y. Liu, L. Luo, M. He et al. Disorders of the blood-aqueous barrier after phacoemulsification in diabetic patients. Eye. 18 (9) (2004) 900

J. Schmier, M. Halpern, D. Covert et al. Evaluation of costs for cystoid macular edema among patients after cataract surgery. Retina. 27 (5) 621

S. Kim, R. Equi, M. Neil. Analysis of Macular Edema after Cataract Surgery in Patients with Diabetes Using Optical Coherence Tomography. Ophthalmol. 114 (5) (2007) 881

H. Laura, V. Lambermont, S. Jan et al. Prevention of Cystoid Macular Edema After Cataract Surgery in Nondiabetic and Diabetic Patients: A Systematic Review and Meta-Analysis. Am. J. Ophthalmol. 160 (5) (2015) 968

D. Patel, S. Prasad, R. Kumar et al. Cataract: A major secondary complication of diabetes, its epidemiology and an overview on major medicinal plants screened for anticataract activity. Asian. Pacific. J. Tropical. Disease.1 (4) (2011) 323

R. Asha, V. Gayathri, A. Abraham.A pentacyclic triterpenoid isolated from Vernonia cinerea attenuate selenite induced cataract formation in Sprague Dawley rat pups. Chemico-Biological. Interactions. 245 (2016) 20

P. Munipally, S. Venui, R. Naik et al. The inhibitory effect of Isoflavones isolated from Caesalpinia pulcherrima on aldose reductase in STZ induced diabetic rats. Chemico-Biological. Interactions. 237 (2015) 18

Y. Miyata, T. Oshitari, Y. Okuyama et al. Polymethoxyflavones as agents that prevent formation of cataract: Nobiletin congeners show potent growth inhibitory effects in human lens epithelial cells. Bio-organic. Medicinal. Chem. Letters. 23 (1) (2013) 183

J. Kim. Chapter 45

M. Onkaramurthy, V.P. Veerapur, B.S. Thippeswamy et al. Anti-diabetic and anti-cataract effects of Chromolaena odorataLinn., in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 145 (1)( 2013) 363

V. Dongare, C. Kulkarni, M. Kondawar et al. Inhibition of aldose reductase and anti-cataract action of trans-anethole isolated from Foeniculum vulgare Mill. Fruits. Food Chemistry. 132 (2012) 385

V. Vats, S. Yadav, N. Biswas et al. Anti-cataract activity of Pterocarpus marsupium bark and Trigonella foenum-graecum seeds extract in alloxan diabetic rats. J. Ethnopharmacol. 93 (2004) 289

M. Moghaddam, P. Kumar, G. Reddy et al. Effect of Diabecon on sugar-induced lens opacity in organ culture: mechanism of action. J. Ethnopharmacol. 97 (2) (2005) 397

N. Halder, S. Joshi, S. K. Gupta. Lens aldose reductase inhibiting potential of some indigenous plants. J. Ethnopharmacol. 86 (1) 113

M. Jacobson, Y. Sharma, E. Cotlier et al. Diabetic complications in lens and nerve and their prevention by sulindac or sorbinil: two novel aldose reductase inhibitors. Invest. Ophthalmol. Visual. Sci. 24 (10) (1983) 1426

Y. Sharma, R. Vajpayee, R. Bhatnagar, et al. Topical sulindac therapy in diabetic senile cataracts: cataract

S. Gupta, S. Joshi. Relationship between aldose reductase inhibiting activity and anti-cataract action of various non-steroidal anti-inflammatory drugs. Dev. Ophthalmol. 21 (1991) 151

S. Gupta, S. Joshi. Naproxen: an aldose reductase inhibitor and potential anti-cataract agent. Dev. Ophthalmol. 21 (1991) 170

E. Cotlier. Aspirin effect on cataract formation in patients with rheumatoid arthritis alone or combined to diabetes. Intern. Ophthalmol. 3 (3) (1981) 173

A. Pollreisz, U. Erfurth. Diabetic Cataract

L. Yun, L. Ya-Zhen, S. Jing-Ming et al. Alpha lipoic acid protects lens from H2O2-induced cataract by inhibiting apoptosis of lens epithelial cells and inducing activation of anti-oxidative enzymes. Asian Pac. J. Trop. Med. 6(7) (2013) 548

I. Maitra, E. Serbinova, H. Trischler et al. ?-lipoic acid prevents buthionine sulfoximine-induced cataract formation in newborn rats. Free Radical Biology and Medicine. 18 (4) (1995) 823

M. Yoshida, H. Kimura, K. Kyuki et al. Combined effect of vitamin E and insulin on cataracts of diabetic rats fed a high cholesterol diet. Biol. Pharm. Bulletin. 27 (3) (2004) 338

J. McNeil, L. Robman, G. Tikellis et al. Vitamin E supplementation and cataract: randomized controlled trial. Ophthalmol. 111(1) (2004) 75-84.

W. Zhao, P. Devamanoharan, M. Henein et al. Diabetes-induced biochemical changes in rat lens: attenuation of cataractogenesis by pyruvate. Diabetes, Obesity and Metabol. 2 (3) (2000) 165

Downloads

Published

2016-06-30

Issue

Section

Review Article

How to Cite

1.
Bhadania M, Majmudar F. A review: Cataract, a common ocular complication in Diabetes. Int J of Pharmc Res [Internet]. 2016 Jun. 30 [cited 2024 Oct. 18];6(6):189-94. Available from: https://ssjournals.co.in/index.php/ijpr/article/view/3286

Similar Articles

1-10 of 16

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

<< < 29 30 31 32 33 34 35 36 > >>