Association of Body Composition, Lipid Parameters and Lifestyle Factors with Bone Health Status in Males and Females of North India: A Case-Control Study

Authors

  • Harkirat Singh Sandhu Department of Human Genetics, Guru Nanak Dev University, Amritsar- 142005
  • Sanjeev Puri Centre for Stem Cell & Tissue Engineering, Panjab University, Chandigarh- 160014
  • Gagandeep Singh Department of Anthropology, Panjab University, Chandigarh- 160014
  • AJS Bhanwer Department of Human Genetics, Guru Nanak Dev University, Amritsar- 142005

DOI:

https://doi.org/10.7439/ijbr.v7i6.3393

Keywords:

Difficult airway, general anaesthesia, endotracheal intubation.

Abstract

A number of epidemiological and animal studies have indicated the fine balance among bone and fat metabolism as the connecting link between osteoporosis and obesity. Excess abdominal fat is associated with an abnormal lipid profile causing greater predisposition towards metabolic diseases like osteoporosis. Quantitative ultrasonometry (QUS) T-score being the surrogate marker of osteoporosis was studied in this case-control study (254 cases, 250 controls) comprising of both males and females to investigate its potential association with anthropometric predictors of adiposity and lipid parameters. According to the WHO criteria, patients with a T-score ? -1.0 SD were marked as cases and ? -1.0 SD as controls. Information on demographic and lifestyle factors, anthropometric measurements and lipid profile was recorded for all the participants. Results depicted that QUS T-score was inversely correlated with the predictors of obesity including BMI, WHtR and BAI in the pooled group, BMI, WHtR and TC in females, and directly correlated with TGL in males. After attenuating for the confounding factors, while obesity indices remained significant in pooled and females, the influence of lipid parameters among males was nullified. However, principal component analysis in all groups pointed obesity to be the major determinant, followed by lipid parameters, accounting for 90% of the variance. Additionally, calcium and fruit intake, post-menopausal and socio-economic status, and smoking had a significant role to play. To conclude, the present data indicates that individuals with greater abdominal obesity might pose a higher risk of developing bone metabolic diseases like osteopenia and osteoporosis, necessitating the need for evaluating the bone status in obese individuals, whilst, the role of lipid parameters still remains conflicting. This might open new avenues in understanding the mechanism underlying bone metabolism.

Downloads

Download data is not yet available.

References

Faulkner, K.G., Cummings, S.R., Black, D., Palermo, L., Gl

Kawalkar, A.C., A Comprehensive Review on Osteoporosis. Journal of Trauma & Orthopaedics. 2014; 9: 3-12.

Genant, H.K., Engelke, K., Fuerst, T., Gl

NIH Consensus Statement, Osteoporosis Prevention, Diagnosis, and Therapy. 2000; 17, pp. 1-45.

Sharma, S., Tandon, V.R., Mahajan, A., Kour, A., Kumar, D., Preliminary screening of osteoporosis and osteopenia in urban women from Jammu using calcaneal QUS. Indian J. Med. Sci. 2006; 60:183-189.

Shapses, S.A., Sukumar, D., Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012; 32: 287-309.

Liu, H.Y., Wu, A.T., Tsai, C.Y., Chou, K.R., Zeng, R., Wang, M.F., Chang, W.C., Hwang, S.M., Su, C.H., Deng, W.P., The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis. Biomaterials. 2011; 32: 6773-6780.

Nuttall, ME., Gimble, J.M., Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone. 2000; 27: 177-184.

Tian, L., Yu, X., Lipid metabolism disorders and bone dysfunction--interrelated and mutually regulated (review). Mol. Med. Rep. 2015;12: 783-794.

Graham, L.S., Tintut, Y., Parhami, F., Kitchen, C.M., Ivanov, Y., Tetradis, S., Effros, R.B., Bone density and hyperlipidemia: the T-lymphocyte connection. J. Bone Miner. Res. 2010; 25: 2460-2469.

Kobayashi, J., Sasaki, T., Watanabe, M., The relationship of abdominal fat mass assessed by helical or conventional computed tomography to serum leptin concentration. J. Atheroscler. Thromb. 2004; 11: 173-179.

Luegmayr, E., Glantschnig, H., Wesolowski, G.A., Gentile, M.A., Fisher, J.E., Rodan, G.A., Reszka, A.A., Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ. 2004; 11: S108-118.

Pirih, F., Lu, J., Ye, F., Bezouglaia, O., Atti, E., Ascenzi, M.G., Tetradis, S., Demer, L., Aghaloo, T., Tintut, Y., Adverse effects of hyperlipidemia on bone regeneration and strength. J. Bone Miner. Res. 2012; 27: 309-318.

Tintut, Y., Morony, S., Demer, L.L., Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler. Thromb. Vasc. Biol. 2004; 24: e6-10.

Adami, S., Braga, V., Guidi, G., Gatti, D., Gerardi, D., Fracassi, E., Chronic intravenous aminobisphosphonate therapy increases high-density lipoprotein cholesterol and decreases low-density lipoprotein cholesterol. J. Bone. Miner. Res. 2000; 15: 599-604.

Horiuchi, N., Maeda, T., Statins and bone metabolism. Oral Dis. 2006; 12: 85-101.

Jensen, L.B., Vestergaard, P., Hermann, A.P., Gram, J., Eiken, P., Abrahamsen, B., Brot, C., Kolthoff, N., S

Luisetto, G., Camozzi, V., Statins, fracture risk, and bone remodeling. J Endocrinol. Invest. 2009; 32: 32-37.

Singh, A.K., Singh, S.K., Singh, N., Agrawal, N., Gopal, K., Obesity and dyslipidemia. Int. J. Biol. Med. Res. 2011; 2: 824-828.

Gharavi, Nima., Role of lipids in osteoporotic bone loss. Nutrition Bytes. 2002; 8: 1-6.

Parhami, F., Possible role of oxidized lipids in osteoporosis: could hyperlipidemia be a risk factor? Prostaglandins Leukot. Essent. Fatty Acids. 2003; 68: 373-378.

Damaraju, S., Matyas, J.R., Rancourt, D.E., Duncan, N.A., The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng. Part A. 2014; 20: 3142-3153.

Lloyd, J.T., Alley, D.E., Hawkes, W.G., Hochberg, M.C., Waldstein, S.R., Orwig, D.L., Body mass index is positively associated with bone mineral density in US older adults. Arch. Osteoporos. 2014; 9: 175.

Hsu, Y.H., Venners, S.A., Terwedow, H.A., Feng, Y., Niu, T., Li, Z., Laird, N., Brain, J.D., Cummings, S.R., Bouxsein, M.L., Rosen, C.J., Xu, XRelation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am. J. Clin. Nutr. 2006; 83: 146-154.

Janicka, A., Wren, T.A., Sanchez, M.M., Dorey, F., Kim, P.S., Mittelman, S.D., Gilsanz, V., Fat mass is not beneficial to bone in adolescents and young adults. J. Clin. Endocrinol. Metab. 2007; 92: 143-147.

Zhao, L.J., Liu, Y.J., Liu, P.Y., Hamilton, J., Recker, R.R., Deng, H.W., Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007; 92: 1640-1646.

Adami, S., Braga, V., Zamboni, M., Gatti, D., Rossini, M., Bakri, J., Battaglia, E., Relationship between lipids and bone mass in 2 cohorts of healthy women and men. Calcif. Tissue. Int. 2003; 74: 136-142.

Begic, Z., Balic, D., Rizvanovic, M., The association between lipid profile and bone density in postmenopausal women. Med. Arch. 2012; 66: 378-381.

Garg, M.K., Marwaha, R.K., Tandon, N., Bhadra, K., Mahalle, N., Relationship of lipid parameters with bone mineral density in Indian population. Indian J. Endocrinol. Metab. 2014; 18: 325-332.

Mithal, A., Bansal, B., Kyer, C.S., Ebeling, P., The Asia-Pacific Regional Audit-Epidemiology, Costs, and Burden of Osteoporosis in India 2013: A report of International Osteoporosis Foundation. Indian J. Endocrinol. Metab. 2013; 18: 449-454.

Sharma, S., Tandon, V.R., Mahajan, S., Mahajan, V., Mahajan, A., Obesity: Friend or foe for osteoporosis. J. Midlife Health. 2014; 5: 6-9.

Marwaha, R.K., Tandon, N., Garg, M.K., Kanwar, R., Narang, A., Sastry, A., Saberwal, A., Bhadra, K., Mithal, A., Bone health in healthy Indian population aged 50 years and above. Osteoporos. Int. 2011; 22: 2829-2836.

Sidhu, S., Kaur, A., Prabhjot., Prevalence of overweight and obesity among urban and rural adult females of Punjab. Anthropol. Anz. 2005; 63: 341-345.

Sidhu, S., Kumari, K., Incidence of overweight and obesity among urban and rural males of Amritsar. J. Exerc. Sci. Physiother. 2006; 2: 79-83.

Kuppuswamy, B., Manual of Socioeconomic Status (urban families). Manasayan. Li, S., Guo, H., Liu, Y., Wu, F., Zhang, H., Zhang, Z., Xie, Z., Sheng, Z., Liao, E., Relationships of serum lipid profiles and bone mineral density in postmenopausal Chinese women. Clin. Endocrinol. (Oxf). 2015; 82: 53-58.

Mishra, D., Singh, H.P., Kuppuswamy

Pareek, U. Manual of Socioeconomic Status (rural). Manasayan. Parhami, F., Garfinkel, A., Demer, L.L., Role of lipids in osteoporosis. Arterioscler Thromb. Vasc. Biol. 2000; 20: 2346-2348.

Friedewald, W.T., Levy, R.I., Fredrickson, D.S., Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972; 18: 499-502.

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 2001; 285: 2486-2497.

Snehalatha, C., Viswanathan, V., Ramachandran, A., Cutoff values for normal anthropometric variables in Asian Indian adults. Diabetes Care. 2003; 26: 1380-1384.

Hsieh, S.D., Muto, T., The superiority of waist-to-height ratio as an anthropometric index to evaluate clustering of coronary risk factors among non-obese men and women. Prev. Med. 2005; 40: 216-220.

Sukumar, D., Schlussel, Y., Riedt, C.S., Gordon, C., Stahl, T., Shapses, S.A., Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos. Int. 2011; 22: 635-645.

Aghaei Meybodi, H.R., Hemmat-abadi, M., Heshmat, R., Rezaei Homami, M., Madani, S., Ebrahimi, M., Adibi, H., Larijani, B., Association between Anthropometric Measures and Bone Mineral Density: Population-Based Study. Iranian J. Publ. Health. 2011; 40: 18-24.

Russell, M., Mendes, N., Miller, K.K., Rosen, C.J., Lee, H., Klibanski, A., Misra, M., Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin. Endocrinol. Metab. 2010; 95: 1247-1255.

Cao, J.J., Effects of obesity on bone metabolism. J. Orthop. Surg. Res. 2011; 15: 6:30.

Takeda, S., Effect of obesity on bone metabolism. Clinical calcium. 2008; 18: 632-637.

Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K.L., Armstrong, D., Wannenes, F., Papa, V., Greco, E.A., Fornari, R., Marocco, C., Baldari, C., Di Luigi. L., Emerenziani, G.P., Poggiogalle, E., Guidetti, L., Donini, L.M., Lenzi, A., Migliaccio, S., 2014. Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/ ? -Catenin Dependent Mechanism. Int. J. Endocrinol. 278316, 1-10.

Oldroyd, A., Dubey, S., The association between bone mineral density and higher body mass index in men. Int. J. Clin. Pract. 2015; 69: 145-147.

Greco, E.A., Fornari, R., Rossi, F., Santiemma, V., Prossomariti, G., Annoscia, C., Aversa, A., Brama, M., Marini, M., Donini, L.M., Spera, G., Lenzi, A., Lubrano, C., Migliaccio, S., Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int. J. Clin. Pract. 2010: 64: 817-820.

Shuster, A., Patlas, M., Pinthus, J.H., Mourtzakis, M., The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br. J. Radiol. 2012; 85: 1-10.

Silventoinen, K., Jousilahti, P., Vartiainen, E., Tuomilehto, J., Appropriateness of anthropometric obesity indicators in assessment of coronary heart disease risk among Finnish men and women. Scand. J. Public Health. 2003; 31: 283-290.

O'Connor, K.G., Tobin, J.D., Harman, S.M., Plato, C.C., Roy, T.A., Sherman, S.S., Blackman, M.R., Serum Levels of Insulin-like Growth Factor-I Are Related to Age and Not to Body Composition in Healthy Women and Men. J. Gerontol: Med. Sci. 1998; 53A, M176-MI82.

Browning, L.M., Hsieh, S.D., Ashwell, M., A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0

Schneider, H.J., Friedrich, N., Klotsche, J., Pieper, L., Nauck, M., John, U., D

Deaton, A., 2008. Height, health, and inequality: the distribution of adult heights in India. Am. Econ. Rev. 98, 468-474.

SRS Report 2012. Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India. Retrieved 19 April 2014.

Geliebter, A., Atalayer, D., Flancbaum, L., Gibson, C.D., Comparison of body adiposity index (BAI) and BMI with estimations of % body fat in clinically severe obese women. Obesity (Silver Spring). 2013; 21: 493-498.

Kim, W., Chung, S.G., Kim, K., Seo, H.G., Oh, B.M., Yi, Y., Kim, M.J., The relationship between body fat and bone mineral density in Korean men and women. J. Bone. Miner. Metab. 2014; 32: 709-717.

Yamaguchi, T., Kanazawa, I., Yamamoto, M., Kurioka, S., Yamauchi, M., Yano, S., Sugimoto, T., Associations between components of the metabolic syndrome versus bone mineral density and vertebral fractures in patients with type 2 diabetes. Bone. 2009; 45: 174-179.

Hedlund, L.R., Gallagher, J.C., The effect of age and menopause on bone mineral density of the proximal femur. J. Bone Miner. Res. 1989; 4: 639-642.

Brown, S.E., Osteoporosis: snap, crackle and pop some pills. Northeast Florida Med. 2006; 57: 14-20.

Jankowska, E.A., Rogucka, E., Medra?, M., Are general obesity and visceral adiposity in men linked to reduced bone mineral content resulting from normal ageing? A population-based study. Andrologia. 2001; 33: 384-389.

Khosla, S., Melton, L.J., Riggs, B.L., Osteoporosis: gender differences and similarities. Lupus. 1999; 8: 393-396.

Mehler, P.S., Sabel, A.L., Watson, T., Andersen, A.E., High risk of osteoporosis in male patients with eating disorders. Int. J. Eat. Disord. 2008; 41: 666-672.

Cawthon, P.M., Gender differences in osteoporosis and fractures. Clin. Orthop. Relat. Res. 2011; 469: 1900-1905.

Maggi, S., Kelsey, J.L., Litvak, J., Heyse, S.P., Incidence of hip frac-tures in the elderly: a cross-national analysis. Osteoporos. Int. 1991; 1: 232

Xu, L., Lu, A., Zhao, X., Chen, X., Cummings, S.R., Very low rates of hip fracture in Beijing, People's Republic of China the Beijing Osteoporosis Project. Am. J. Epidemiol. 1996; 144: 901-907.

Blaauw, R., Albertse, E.C., Beneke, T., Lombard, C.J., Laubscher, R., Hough, F.S., Risk factors for the development of osteoporosis in a South African population. A prospective analysis. S. Afr. Med. J. 1994; 84: 328-332.

Blaauw, R., Albertse, E.C., Hough S. Body fat distribution as a risk factor for osteoporosis. S. Afr. Med. J. 1996; 86: 1081-1084.

Riggs, B.L., Melton, L.J., Robb, R.A., Camp, J.J., Atkinson, E.J., Peterson, J.M., Rouleau, P.A., McCollough, C.H., Bouxsein, M.L., Khosla, S., Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J. Bone Miner. Res. 2004; 19: 1945-1954.

Sigurdsson, G., Aspelund, T., Chang, M., Jonsdottir, B., Sigurdsson, S., Eiriksdottir, G., Gudmundsson, A., Harris, T.B., Gudnason, V., Lang, T.F., Increasing sex difference in bone strength in old age: The Age, Gene/Environment Susceptibility-Reykjavik study (AGES-REYKJAVIK). Bone. 2006; 39: 644-651.

P

Kaur, S., Walia, I., Body mass index, waist circumference and waist hip ratio among nursing students. Nurs. Midwifery Res. J. 2007; 3: 84-90.

Shatrugna, V., Kulkarni, B., Kumar, P.A., Rani, K.U., Balakrishna, N., Bone status of Indian women from a low-income group and its relationship to the nutritional status. Osteoporos. Int. 2005; 16: 1827-1835.

Arya, V., Bhambri, R., Godbole, M.M., Mithal, A., Vitamin D status and its relationship with bone mineral density in healthy Asian Indians. Osteoporos Int. 2004; 15: 56- 61.

Bischoff-Ferrari, H.A., Rees, J.R., Grau, M.V., Barry, E., Gui, J., Baron, J.A., Effect of calcium supplementation on fracture risk: a double-blind randomized controlled trial. Am J. Clin. Nutr. 2008; 87: 1945-1951.

Lips, P., Bouillon, R., van Schoor, N.M., Vanderschueren, D., Verschueren, S., Kuchuk, N., Milisen, K., Boonen, S., Reducing fracture risk with calcium and vitamin D. Clin. Endocrinol. (Oxf). 2010; 73: 277-285.

Jorde, R., Sneve, M., Torjesen, P.A., Figenschau, Y., Hansen, J.B., Grimnes, G., No significant effect on bone mineral density by high doses of vitamin D3 given to overweight subjects for one year. Nutr. J. 2010; 9: 1-9.

von M

Harinarayan, C.V., Ramalakshmi, T., Prasad, U.V., Sudhakar, D., Vitamin D status in Andhra Pradesh: a population based study. Indian J. Med. Res. 2008; 127: 211-218.

Tiwana, N.S., Jerath, N., Ladhar, S.S., Singh, G., Paul, R., Dua, D.K., Parwana, H.K., 2007. State of Environment; Punjab- Punjab State Council for Science & Technology, 2007, pp 1-243.

Lim, L.S., Harnack, L.J., Lazovich, D., Folsom, A.R., Vitamin A intake and the risk of hip fracture in postmenopausal women: the Iowa Women's Health Study. Osteoporos. Int. 2004; 15: 552-559.

Melhus, H., Micha

Wu, B., Xu, B., Huang, T.Y., Wang, J.R., A model of osteoporosis induced by retinoic acid in male Wistar rats. Yao Xue Xue Bao. 1996; 31: 241-245.

Yang, J., Wu, N., Peng, J., Yang, X., Guo, J., Yin, S., Wang, J., Prevention of retinoic acid-induced osteoporosis in mice by isoflavone-enriched soy protein. J. Sci. Food Agric. 2015.

Oyen, J., Gram Gjesdal, C., Nyg

Krall, E.A., Dawson-Hughes, B., Smoking increases bone loss and decreases intestinal calcium absorption. J. Bone. Miner. Res. 1999; 14: 215-220.

Compston, J.E., Vedi, S., Stephen, A.B., Bord, S., Lyons, A.R., Hodges, S.J., Scammell, B.E., Reduced bone formation after exposure to organophosphates. Lancet. 1999; 354: 1791-1792.

Beloyartseva, M., Mithal, A., Kaur, P., Kalra, S., Baruah, M.P., Mukhopadhyay, S., Bantwal, G., Bandgar, T.R., Widespread vitamin D deficiency among Indian health care professionals. Arch. Osteoporos. 2012; 7: 187-192.

Harinarayan, C.V., Prevalence of vitamin D insufficiency in postmenopausal south Indian women. Osteoporos Int. 2005; 16: 397-402.

Harinarayan, C.V., Ramalakshmi, T., Prasad, U.V., Sudhakar, D., Srinivasarao, P.V., Sarma, K.V., Kumar, E.G., High prevalence of low dietary calcium, high phytate consumption, and vitamin D deficiency in healthy south Indians. Am. J. Clin. Nutr. 2007: 85: 1062-1067.

Marwaha, R.K., Tandon, N., Reddy, D.R., Aggarwal, R., Singh, R., Sawhney, R.C., Saluja, B., Ganie, M.A., Singh, S., Vitamin D and bone mineral density status of healthy schoolchildren in northern India. Am. J. Clin. Nutr. 2005: 82: 477-482.

Sachan, A., Gupta, R., Das, V., Agarwal, A., Awasthi, P.K., Bhatia, V., High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. Am. J. Clin. Nutr. 2005; 81: 1060-1064.

Malhotra, N., Mithal, A., Osteoporosis in Indians. Indian J. Med. Res. 2008; 127: 263-268.

Mithal, A., Kaur, P., Osteoporosis in Asia: a call to action. Curr. Osteoporos. Rep. 2012; 10: 245-247.

Mitra, S., Desai, M., Khatkhatay, M.I., Association of estrogen receptor alpha gene polymorphisms with bone mineral density in postmenopausal Indian women. Mol. Genet. Metab. 2006; 87: 80-87.

Shivane, V.K., Sarathi, V., Lila, A.R., Bandgar, T., Joshi, S.R., Menon, P.S., Shah, N.S., Peak bone mineral density and its determinants in an Asian Indian population. J Clin. Densitom. 2012; 15: 152-158.

Mann, T.S., McGregor, A.H., Patel, R., The Correlation between Phalangeal Quantitative Ultrasonography and Dual Energy X-ray Absorptiometry in Women with Premature Ovarian Failure. MJM McGill J. Med. 2008; 11: 132-140.

Mussolino, M.E., Looker, A.C., Madans, J.H., Edelstein, D., Walker, R.E., Lydick, E., Epstein, R.S., Yates, A.J., Phalangeal bone density and hip fracture risk. Arch. Intern. Med. 1997; 157: 433-438.

Chen, H., Kubo, K.Y., Bone three-dimensional microstructural features of the common osteoporotic fracture sites. World J Orthop. 2014; 5: 486-495.

Herrmann, D., Intemann, T., Lauria, F., M

Frost, M.L., Blake, G.M., Fogelman, I., Quantitative ultrasound and bone mineral density are equally strongly associated with risk factors for osteoporosis. J. Bone Miner. Res. 2001; 16: 406-416.

Schuit, S.C., van der Klift, M., Weel, A.E., de Laet, C.E., Burger, H., Seeman, E., Hofman, A., Uitterlinden, A.G., van Leeuwen, J.P., Pols, H.A., Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004; 34: 195-202.

Siris, E.S., Miller, P.D., Barrett-Connor, E., Faulkner, K.G., Wehren, L.E., Abbott, T.A., Berger, M.L., Santora, A.C., Sherwood, L.M., Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA. 2001; 286: 2815-2822.

Kanis, J.A., Johnell, O., Oden, A., Johansson, H., McCloskey, E., FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 2008; 19: 385-397.

Lopez, A.A., Cespedes, M.L., Vicente, T., Tomas, M., Bennasar-Veny, M., Tauler, P., Aguilo, A., Body adiposity index utilization in a Spanish Mediterranean population: comparison with the body mass index. PLoS One. 2012; 7: e35281.

Downloads

Published

2016-06-30

Issue

Section

Original Research Articles

How to Cite

1.
Association of Body Composition, Lipid Parameters and Lifestyle Factors with Bone Health Status in Males and Females of North India: A Case-Control Study. Int Jour of Biomed Res [Internet]. 2016 Jun. 30 [cited 2024 Oct. 19];7(6):375-86. Available from: https://ssjournals.co.in/index.php/ijbr/article/view/3393

Similar Articles

1-10 of 74

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

<< < 3 4 5 6 7 8 9 10 11 12 > >>