Evaluation of Anticancer activity of Acorus calamus using in silico and in vitro models.

Anticancer activity of saponin isolated from Acorus calamus

Authors

Keywords:

Acorus calamus, Human breast cancer MCF -7 cells, MTT assay, Angiogenesis assay, Chromosomal aberration assay, Apopsis assay.

Abstract

The present study evaluated the anticancer action of saponin rich fraction of Acorus calamus by the use of in silico and in-vitro models. In silico studies of 1α, 2β, 3γ, 19α-tetrahydroxyurs-12en-28-oicacid-28-O{-β-Dglucopyranosyl (1→2)} β- D- galactopyranoside and 3β, 22α, 24,29-tetrahydroxyolean-12-en-3-O-{-β-D-arabinosyl(1→3)}-β-D-arabinopyranoside was performed via PASS Online and SwissTargetPrediction softwarae for the prediction of structure based pharmacological activities and docking studies with Autodock Vina. Saponin rich fraction was examined for its effects on growth of MCF-7 cells using MTT antiproliferative assay. Angiogenic property was assessed by in vitro shell less cultures of chick embryo using different (3µg/ml, 6µg/ml, and 12µg/ml) concentrations. Chromosomal aberration assay was studied in vitro in cultured human blood after the treatment of saponin rich fraction for the physical reliability of chromosomes. Apoptogenic prospective of saponin rich fraction was also assessed in MCF-7 cells by using cleaved caspases-3 and cleaved caspase-8. MTT assay result demonstrated IC50 value of saponin rich fraction at 6μg/mL in MCF-7 cells. Angiogenic parameters showed significant (p<0.05) decline after the treatment. Insignificant chromosomal aberrations were observed in normal blood cells. Treatment of saponin rich fraction stimulates caspases-3 (OD 0.04 at 450 nm) and caspase-8 (OD 0.08 at 450 nm) in MCF-7 cells.

Downloads

Download data is not yet available.

Author Biography

  • Dr. Shrikant V. Joshi, Maliba Pharmacy College

    department of pharmacy (pharmacology)

References

Lakshmi Priya M, Bhanu PriyaK, Kotakadi VS, Josthna P. Herbal and Medicinal Plants Molecules towards Treatment of Cancer: A Mini Review. Am J Ethnomed 2015; 2(2):136-42.

Balakumbahan R, Rajamani K, Kumanan K. Acorus calamus: An overview. J Med Plant Res 2010; 4(25):2740-5.

Prajapati ND, Purohit SS, Sharma DD, Tarun K. A Handbook of Medicinal Plants, Section II. India. 2003.

Imam H, Riaz Z, Azhar M, Sofi G, Hussain A. Sweet flag (Acorus calamus Linn.): An incredible medicinal herb. Int J Green Pharm 2013; 7:288-96.

Mukherjee PK., Kumar V, Mal M, Houghton PJ. Acorus calamus: Scientific Validation of Ayurvedic Tradition from Natural Resources. Pharm Biol 2007; 45(8):651-66.

Yende SR, Harle UN, Rajgure DT, Tuse, TA, Vyawahare NS. Pharmacological profile of Acorus calamus : An Overview. Phcog Rev 2008; 2(4):22-6.

Kumar A. Medicinal Properties of Acorus Calamus. J Drug Deliv Ther 2013; 3(3):143–4.

Gilani H, Shah AJ, Ahmad M, Shaheen F. Antispasmodic Effect of Acorus calamus Linn. is mediated through Calcium Channel Blockade. Phytother Res 2006; 20:1080–4.

Kirtikar KR, Basu BD. Indian Medicinal Plants. L.M. Basu, Allahabad; India. 1933.

Meena AK, Rao MM, Singh A, Kumar S. Physiochemical and preliminary phytochemical studies on the rhizome of Acorus calamus. Int J Pharm Pharm Sci 2010; 2:130–1.

Vohora SB, Shah SA, Dandiya PC. Central nervous system studies on an ethanol extract of Acorus calamus rhizomes. J Ethnopharmacol 1990; 28:53-62.

Devi SA, Bawankar R, Babu S. Current status on biological activities of Acorus calamus - A review. Int J Pharm Pharm Sci 2014; 6(10):66-71.

Gaidhani SN, Lavekar GS, Juvekar AS, Sen S, Singh A, Kumar S. In vitro anti-cancer activity of standard extracts used in Ayurveda. Pharmacogn Mag 2009; 5:425–9.

Bains JS, Dhuna V, Singh J, Kamboj SS, Nijja, KK, Agrewala JN. Novel lectins from rhizomes of two Acorus species with mitogenic activity and inhibitory potential towards murine cancer cell lines. Int Immunopharmacol 2005; 5:1470–8.

Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (Sweet flag) and other Acorus species. Phytomedicine 2014; 21(3):268–76.

Zhu X, Jiang H, Li J, Xu J, Fei Z. Anticancer Effects of Paris Saponins by Apoptosis and PI3K / AKT Pathway in Gefitinib- Resistant Non-Small Cell Lung Cancer. Med Sci Monit 2016; 22:1435–41.

Pal BC, Achari B, Yoshikawa K, Arihara S. Saponins from Albizia lebbeck. Phytochemistry 1995; 38(5):1287–91.

Venkatesh P, Mukherjee PK, Kumar NS, Bandyopadhyay A, Fukui H, Mizuguchi H, Islam N. Anti-allergic activity of standardized extract of Albizia lebbeck with reference to catechin as a phytomarker. Immunopharmacol Immunotoxicol 2010; 32(2):272–6.

Bobby MDN, Wesely EG, Johnson M. High performance thin layer chromatography profile studies on the alkaloids of Albizia lebbeck. Asian Pac J Trop Biomed 2012; 2(1): S1–S6.

Lagunin A, Filimonov D, Poroikov V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des 2010; 16:1703-17.

Poroikov, V., Filimonov, D., Borodina, Y. V., Lagunin, A. A: Robustness of biological activity spectra predicting by computer program PASS for noncongeneric sets of chemical compounds. J Chem Inf Comput Sci 2000; 40:1349–55.

Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 2003; 43:228-36.

Laskowski RA, Swindells MB. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 2011; 51:2778-86.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010: 31:455–61.

Plumbs JA. Cell sensitivity assay: The MTT assay. Methods in molecular medicine, cytotoxic drug resistance mechanisms, Humana Press, New Jersey. 2004. Vol 28

Brahma J, Dhumal K. Evaluation of Anti-angiogenic properties of Tridax procumbens leaves extract using shell less chick embryo culture. Int J Bioassays 2014; 3(02):1765-7.

Alsatari ES, Mohammad A, Khabour OF, Alzoubi KH, Sadiq MF. Assessment of DNA damage using chromosomal aberrations assay in lymphocytes of waterpipe smokers. Int J Occup Med Environ Health 2012; 25(3):218-24.

Xu JX, Song HP, Bu QX, Feng DP, Xu XF, Sun OR, Li XL. Isoflavone Attenuates the Caspase-1 and Caspase-3 Level in Cell Model of Parkinsonism. Behav Neurol 2015; 2015:725897.

Goze I, Cetin A, Goze A. Investigation of effects of essential oils of Origanum minutiflorum O Schwarz PH Davis and Cyclotrichium niveum (Labiatae ) plants on angiogenesis in shell-less chick embryo culture. Afr J Biotechnol 2010; 9(14):2156–60.

Bhattacharyya SS, Paul S, Khuda-bukhsh AR. Encapsulated plant extract (Gelsemium sempervirens) poly (lactide-co-glycolide) nanoparticles enhance cellular uptake and increase bioactivity in vitro. Exp Biol Med 2010; 235:678–88.

Ghagane SC, Puranik SI, Kumbar VM, Nerli RB, Jalalpure SS, Hiremath MB, Neelagund S, Aladakatti R. In vitro antioxidant and anticancer activity of Leea indica leaf extracts on human prostate cancer cell lines. Integr Med Res 2017; 6(1):79–87.

Bruggisser R, Von Daeniken K., Jundt G, Schaffner W, Tullberg-Reinert H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med 2002; 68(5):445–8.

Ogbole OO, Segun PA, Adeniji AJ. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement Altern Med 2017; 17(1):1–10.

Rajkumar V, Guha G, Kumar AR, Mathew L. Evaluation of Cytotoxic Potential of Acorus calamus Rhizome. Ethnobot Leaflets 2009; 13:832-9.

Peifer C, Dannhardt G. A novel quantitative chick embryo assay as an angiogenesis model using digital image analysis. Anticancer Res 2004; 24(3 A):1545–51.

Deryugina EI, Quigley JP. CHAPTER TWO: Chick Embryo Chorioallantoic Membrane Models to Quantify Angiogenesis Induced by Inflammatory and Tumor Cells or Purified Effector Molecules. Methods Enzymol 2008; 444:21-41.

Ribatti D, Vacca A, Roncali L, Dammacco F. The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Plant Dev Biol 1996; 40(6):1189–97.

Ribatti D. The chick embryo chorioallantoic membrane (CAM) assay. Reprod Toxicol 2017; 70:97–101.

Ozery-Flato M, Linhart C, Trakhtenbrot L, Izraeli S, Shamir R. Large-scale analysis of chromosomal aberrations in cancer karyotypes reveals two distinct paths to aneuploidy. Genome Biol 2011; 12(6): R61.

Albertson DG, Collins C, McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet 2003; 34(4):369–76.

Gisselsson D. Chromosomal instability in cancer: Causes and consequences. Atlas Genet Cytogenet Oncol Haematol 2001; 3:1–9.

McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 2013; 5(4):1–28.

Fiandalo MV, Kyprianou N. Caspase control: Protagonists of cancer cell apoptosis. Exp Oncol 2012; 34(3):165-75.

Jakubowska K, Guzińska-Ustymowicz K, Famulski W, Cepowicz D, Jagodzińska D, Pryczynicz A. Reduced expression of caspase-8 and cleaved caspase-3 in pancreatic ductal adenocarcinoma cells. Oncol Lett 2016; 11(3):1879–84.

Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME. Differential Modulation of Apoptosis Sensitivity in CD95 Type I and Type II Cells. J Biol Chem 1999; 274(32):22532–8

Downloads

Published

2021-11-30

Issue

Section

Research Articles

How to Cite

1.
Desai TH, Joshi S. Evaluation of Anticancer activity of Acorus calamus using in silico and in vitro models.: Anticancer activity of saponin isolated from Acorus calamus. Int J of Pharmc Res [Internet]. 2021 Nov. 30 [cited 2025 Mar. 14];11(11):e5663. Available from: https://ssjournals.co.in/index.php/ijpr/article/view/5663