Analgesic and anti-inflammatory properties of synthesized imidazopyrinidyl-chalcones: Relationship activity and structure
Keywords:
Chalcones, Pain, inflammationAbstract
Background : The effective management of pain in clinic is still challenging practitioner because of the many side effects associated with the use of current drugs, which can even affect life quality of the patients. Chalcones are described as compounds that have various pharmacological activities such as antioxidants, anti-inflammatories, anticancer antifungals and antibacterials. The objective of this study was to evaluate the analgesic and anti-inflammatory properties of two (2) synthesized imidazopyridinyl-chalcones.
Materials and Methods : Imidazopyridinyl-chalcones tested V1 and V2, different by the substituent, type hydroxyl group for V1 and diethylamine for V2, were synthesized by the Department of Organic and Therapeutic Chemistry of Pharmaceutical and Biological Sciences (Cote d'Ivoire). The analgesic and anti-inflammatory activities were performed in mice and rats respectively by acetic acid-induced writhes test according to the method described by Koster et al and formalin-induced irritation test performed by Dubuisson et al .
Results : V1 and V2 showed inhibition of contortions induced by acid acetic 1%, with greater analgesic effect for V2 at lower doses, while the opposite was observed for V1. At concentration of 3.125 mg/kg b. wt., V2 was 77.78% and V1 reach this percentage around 72.22% at 50 mg/kg b.wt., whereas that of paracetamol 100 mg/kg b. wt., used as a reference was about 48%. The anti-inflammatory effect of V2 (43.51%) was also higher compared to V1 (34.85%) at 3.125 mg/kg b.wt, but when doses increases at 12.25 mg/kg b. wt., the effect was non-significantly different to that of ketoprofen (69.98%) at 10 mg/kg b. wt., and range 48.57% and 47.73% respectively for V2 and V1.
Conclusion : Imidazopyridinyl-chalcones is a good model for the development of new molecules and it would appear that the presence of electron donor group like diethylamine is better than hydroxyl to push up analgesic and/or anti-inflammatory activities.
Downloads
References
Finnerup, N. B. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015; 14: 162-173.
Hewitt D.J., Hargreaves R.J., Curtis S.P., et al. Challenges in analgesic drug development. Clinical Pharmacology & Therapeutics. 2009; 86(4): 447-450.
Finnerup, N. B., Sindrup, S. H. & Jensen, T. S. The evidence for pharmacological treatment of neuropathic pain. Pain 2010; 150, 573-581.
Nogueira C.W., Quinhones E.B., Jung E.A.C., Zeni G., Rocha J.B.T. Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm Res 2003; 52: 56-63.
Singh P., Raj R., Kumar V., Mahajan M.P., Bedi P.M.S., Kaur T., and al. 1,2,3- Triazole tethered β-lactam-Chalcone bifunctional hybrids: Synthesis and anticancer evaluation. Eur J Med Chem. 2012; 47(1): 594-600.
Jin F., Jin X.Y., Jin Y.L., Sohn D.W., and al. Structural requirements of 2,4,6-tris(methoxymethoxy) chalcone derivatives for anti-inflammatory activity: the importance of a 2-hydroxy moiety. Arch Pharm Res. 2007; 30(11): 1359-67.
Srivastava S., Sonkar R., Mishra S.K., Tiwari A., and al.: Antidyslipidemic and antioxidant effects of novel lupeol-derived Chalcones. Lipids 2013; 48(10): 1017-27.
Meotti F.C., Stangherlin E., Zeni G., Nogueira C.W., Rocha J.B.T. Protective role of aryl and alkyl diselenide on lipid peroxidation. Environ Res 2004; 94: 276-82.
Koster R., Anderson M., de Beer E.J. Acetic acid for analgesic screening. Fed Proc 1959; 18: 412-418.
Dubuisson D., Dennis S.G. The formalin test: A quantitative study injected limb, was determined at which the rat would give of the analgesic effects of morphine, meperidine, and brain stem a vocal response. Pain 1997; 4: 161-77.
Tjolsen A., Berge O.G., Hunskaar S. The formalin test: an evaluation of the method. Pain 1992; 51: 5-17.
Louhimies S. Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes. Altern Laboratory Animals: Atla 2002; 30(2): 217-219.
Vinegar R., Truax J.F., Selph J.L., Jonhston P.R. Antagonism of pain and hyperalgesia. Anti-inflammatory drugs. In: Vane JR, Ferreira SH, editors. Handbook of experimental pharmacology, 50/II. Berlin: Springer-Verlag; 1979. p. 208-12.
Tjolsen A., Hole K. Animal models of analgesia. In: Dieckson A, Besson J-M, editors. The pharmacology of pain 130/I. Berlin: Springer-Verlag; 1997. p. 1-20.
Le Bars D., Gozariu M., Cadden S.W. Animal models of nociception. Pharmacological Reviews. 2001; 53(4): 597-652.
Collier H.O.J., Dinneen LC, Johnson CA, Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. British Journal of Pharmacology. 1968; 32(2): 295-310.
Vergne P., Bertin P., Trves R. Aspirine, douleurs et inflammation. La Revue de Medecine Interne. 2000; 21: S89-S96.
Docherty, R. J., Robertson, B. & Bevan, S. Capsaicin causes prolonged inhibition of voltage-activated calcium currents in adult rat dorsal root ganglion neurons in culture. Neuroscience 1991; 40: 513-521.
Wu, Z. Z., Chen, S. R. & Pan, H. L. Transient receptor potential vanilloid type 1 activation down-regulates voltage-gated calcium channels through calcium dependent calcineurin in sensory neurons. J. Biol. Chem. 2005; 280: 18142-18151.
Parada C.A., Tambeli, C.H., Cunha F.Q. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience 2001; 102(4): 937-44.
Hunskaar S., Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 1987; 30: 103-14.
Tjolsen A., Berge O.G., Hunskaar S. The formalin test: an evaluation of the method. Pain 1992; 51: 5-17.
Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 2004; 63: 901-910.
Bartels, A.L.; Leenders, K.L. Cyclooxygenase and neuroinflammation in Parkinson's disease neurodegeneration. Curr. Neuropharmacol. 2010; 8: 62-68.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 International Journal of Pharmacological Research

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Author must Submit Copyright form After acceptance of Article