Effects of intermittent pneumatic compression vs. neuromuscular electrical stimulation on recovery following anaerobic exercise in male basketball players
DOI:
https://doi.org/10.7439/ijbar.v7i10.3655Keywords:
Coliform, Water-borne, Illnesses, Outbreak, QualityAbstract
Objective: To compare the effects of Intermittent PneumaticDownloads
References
Hoffman JR, Epstein S, Einbinder M, & Weinstein Y. A Comparison between the Wingate Anaerobic Power Test to Both Vertical Jump and Line Drill Tests in Basketball Players. The Journal of Strength & Conditioning Research. 2000: 14(3): 261-4.
Crisafulli A, Melis F, Tocco F, & Laconi P. External mechanical work versus oxidative energy consumption ratio during a basketball field test. Journal of sports medicine and physical fitness. 2002; 42(4): 409.
Abdelkrim NB, Chaouachi A, Chamari K, Chtara M, & Castagna C. Positional role and competitive-level differences in elite-level men's basketball players. The Journal of Strength & Conditioning Research. 2010; 24(5): 1346-55.
McInnes SE, Carlson JS, Jones CJ and McKenna MJ. The physiological load imposed on basketball players during competition. J. Sports Sci. 1995; 13:387
Fox EL, Bowers RW, Fos ML.
Fox EL and Mathews DK. The Physiological Basis of Physical Education and Athletics. Philadelphia: WB Saunders, 1996.
Gillam GM. Basketball energetics: physiological basis. Nat Strength Cond Assoc J. 1985; 6: 44
Rodriguez-Alonso M, Fernandez-Garcia B, Perez-Landaluce J and Terrados, N. Blood lactate and heart rate during national and international women
Stauffer KA. The comparison of the Max Jones Quadrathlon with the vertical jump and Wingate Cycle Tests as a method to access anaerobic power in female Division I College Basketball Players. University of Pittsburgh 2005.
Impellizzeri FM, Rampinini E, Castagna C, Bishop D, Ferrari Bravo D, Tibaudi A, and Wisloff U. Validity of a repeated-sprint test for football. Int J Sports Med. 2008; 29: 899
Rampinini E, Bishop D, Marcora SM, Ferrari Bravo D, Sassi R and Impellizzeri FM. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med. 2007; 28: 228
Balciunas M, Stonkus S, Abrantes C, Sampaio J. Long term effects of different training modalities on power, speed, skill and anaerobic capacity in young male basketball players. J Sports Sci Med. 2006; 5:163-70.
Myers J & Ashley E. Dangerous curves: a perspective on exercise, lactate, and the anaerobic threshold. CHEST Journal. 1997; 111(3): 787-95.
Mika A, Mika P, Fernhall B & Unnithan VB. Comparison of recovery strategies on muscle performance after fatiguing exercise. American Journal of Physical Medicine & Rehabilitation. 2007; 86(6): 474-81.
Babault N, Cometti C, Maffiuletti NA, & Deley G. Does electrical stimulation enhance post-exercise performance recovery? European Journal of Applied Physiology. 2011; 111(10): 2501-7.
Gill ND, Beaven CM, & Cook C. Effectiveness of post-match recovery strategies in rugby players. British journal of sports medicine. 2006; 40(3): 260-3.
Toubekis AG, Tsolaki A, Smilios I, Douda HT, Kourtesis T, Tokmakidis SP. Swimming performance after passive and active recovery of various durations. Int J Sports Physiol Perform. 2008; 3(3): 375-86
Eston R, Peters D. Effects of cold-water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci. 1999; 17: 231
Chen AH, Frangos SG, Kilaru S, & Sumpio BE. Intermittent pneumatic compression devices
Zelikovski A, Kaye CL, Fink G, Spitzer SA & Shapiro Y. The effects of the modified intermittent sequential pneumatic device (MISPD) on exercise performance following an exhaustive exercise bout. British Journal of Sports Medicine. 1993; 27(4): 255-9.
Wiener A, Mizrahi J and Verbitsky O. Enhancement of Tibialis Anterior Recovery by Intermittent Sequential Pneumatic Compression of the Legs. Basic Appl Myol. 2001; 11: 87
Lattier G, Millet GY, Martin A, and Martin V. Fatigue and recovery after high-intensity exercise. Part II: Recovery interventions. Int. J. Sports Med. 2004; 25(7): 509
McLoughlin TJ, Snyder AR, Brolinson PG & Pizza FX. Sensory level electrical muscle stimulation: effect on markers of muscle injury. British Journal of Sports Medicine. 2004; 38(6): 725-9.
Neric FB, Beam WC, Brown LE and Wiersma LD. Comparison of swim recovery and muscle stimulation on lactate removal after sprint swimming. J. Strength Cond Res. 2009; 23(9): 2560-7.
Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK and Nevill AM 1995. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol. 1995; 482(2): 467
Bieuzen F, Borne R, Toussaint JF, Hausswirth C. Positive effect of specific low-frequency electrical stimulation during short-term recovery on subsequent high-intensity exercise. Appl Physiol Nutr Metab. 2014 Feb; 39(2): 202
Seo B, Kim D, Choi D, Kwon C & Shin H. The Effect of electrical stimulation on blood lactate after anaerobic muscle fatigue induced in Taekwondo athletes. Journal of Physical Therapy Science. 2011; 23(2): 271-5.
Draper N. and Whyte G. Here's a new running based test of anaerobic performance for which you need only a stopwatch and a calculator. Peak Performance. 1997; 96: 3-5.
Filipovic A, Klein
Martin JS, Friedenreich ZD, Borges AR & Roberts MD. Acute Effects of Peristaltic Pneumatic Compression on Repeated Anaerobic Exercise Performance and Blood Lactate Clearance. Journal of Strength and Conditioning Research. 2015; 29 (10): 2900-6
Gomes de Araujo G, Manchado-Gobatto FDB, Papoti M, Camargo BHF, & Gobatto CA. Anaerobic and Aerobic Performances in Elite Basketball Players. Journal of human kinetics. 2014; 42(1): 137-47.
Malone JK, Coughlan GF, Crowe L, Gissane GC & Caulfield B. The physiological effects of low-intensity neuromuscular electrical stimulation (NMES) on short-term recovery from supra-maximal exercise bouts in male triathletes. European journal of applied physiology. 2012; 112(7): 2421-32.
Zagatto AM, Beck WR & Gobatto CA. Validity of the Running Anaerobic Sprint Test for Assessing Anaerobic Power and Predicting Short-Distance Performances. Journal of Strength & Conditioning Research. 2009; 23(6): 1820-7.
Gwacham N, Wagner DR. Acute Effects of a Caffeine-Taurine Energy Drink on Repeated injuries in sport. Int Sport Med J. 2004; 5: 200
Keir DA, Th
Yilmaz, G
Sorokhaibam PS, Das S & Badkaria G. Anaerobic Performance among State Level Soccer and Basketball Players: A Comparitive Study.2015.
Park TH. The effects of TENS and treadmill exercise after anaerobic exercise for blood lactate concentration. Taegu University, Dissertation of Graduate School, 2001.
Comerota AJ. Intermittent pneumatic compression: physiologic and clinical basis to improve management of venous leg ulcers. J Vasc Surg. 2011; 53: 1121-9.
Hanson E, Stetter K, Li R, & Thomas A. An Intermittent Pneumatic Compression Device Reduces Blood Lactate Concentrations More Effectively Than Passive Recovery after Wingate Testing. J Athl Enhancement. 2013; 2 (3): 18-25.
Warren CD, Brown LE, Landers MR & Stahura KA. Effect of Three Different Between-Inning Recovery Methods on Baseball Pitching Performance. Journal of Strength and Conditioning Research. 2011; 25(3): 683
Pinar S, Kaya F, Bicer B, Erzeybek MS, Cotuk HB. Different Recovery Methods And Muscle Performance After Exhausting Exercise: Comparison Of The Effects Of Electrical Muscle Stimulation And Massage. Biology of Sports. 2012; 29(4): 269.
Cochrane DJ, Teo C. The effect of neuromuscular electrical stimulation (FireflyTM device) on blood lactate clearance and anaerobic performance. Edorium J Sports Med. 2015; 1:1
Northey JM, Rattray B, Argus CK, Etxebarria N & Driller MW. Vascular Occlusion and Sequential Compression for Recovery after Resistance Exercise. The Journal of Strength & Conditioning Research. 2016; 30(2): 533-9.
Wadsworth H, Chanmugan A. Electrophysical Agents in Physiotherapy. Marrickville: Science Press, 1980, pp 347
Noble JG, Henderson G, Cramp AF, et al. The effect of interferential therapy upon cutaneous blood flow in humans. Clin Physiol. 2000; 20: 2
Taylor K, Newton RA, Personius WJ, et al. Effects of interferential current stimulation for treatment of subjects with recurrent jaw pain. Phys Ther. 1987; 67: 346
K
Barnett A. Using recovery modalities between training sessions n elite athletes. Does it help? Sports Med. 2006; 36:781
Kraemer WJ, French DN, & Spiering BA. Compression in the treatment of acute muscle injuries in sport. International Sport Med Journal. 2004; 5(3).
Ramos R, Salem BI, De Pawlikowski MP, Coordes C, Eisenberg
S, Leidenfrost R. The efficacy of pneumatic compression stockings in the prevention of pulmonary embolism after cardiac surgery. Chest. 1996; 109: 82-5.
Feldman JF, Stout NL, Wanchai A, Stewart BR, Cormier JN and Armer JM. Intermittent pneumatic compression therapy: A systematic review. Lymphology. 2013; 45: 13
Heinonen I, Brothers RM, Kemppainen J, Knuuti J, Kalliokoski KK, & Crandall CG. Local heating, but not indirect whole-body heating, increases human skeletal muscle blood flow. Journal of Applied Physiology. 2011; 111(3): 818-24
O'Donnell S & Driller MW. The effect of intermittent sequential pneumatic compression on recovery between exercise bouts in well-trained triathletes. Journal of Science and Cycling. 2015; 4(3):19.
Cheng R, Pomeranz B. Electroacupuncture analgesia could be mediated by at least two pain-relieving mechanisms: endorphin and non-endorphin systems. Life Sci. 1980; 25:1957
Broderick BJ, O
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (SeeThe Effect of Open Access).