

Jatropha gossypiifolia L.: Pharmacognostic, Phytochemical, and Pharmacological Insights

Shweta Hattimare, Kishor Danao*, Akanksha Deotale, Disha Dhabarde and Jagdish Baheti

Department of Pharmaceutical Chemistry, Kamla Nehru College of Pharmacy, Butibori, Nagpur-441108, Maharashtra, India

Abstract

Jatropha gossypiifolia L., a species within the Euphorbiaceae family, possesses considerable ethnobotanical relevance across various global regions. Historically, diverse parts of the plant, including leaves, roots, and latex, have been employed in folk medicine for conditions such as inflammation, dysentery, infections, and snakebites. Phytochemical investigations have revealed a complex array of secondary metabolites, including alkaloids, flavonoids, tannins, terpenoids, saponins, phenols, steroids, and cardiac glycosides. These chemical constituents underpin a broad spectrum of pharmacological activities. Experimental studies have demonstrated antimicrobial efficacy against both Gram-positive and Gram-negative bacteria, as well as fungi, supporting its traditional use in treating infections. Furthermore, research indicates cytotoxic effects against various cancer cell lines, suggesting potential for anticancer drug development, particularly with compounds like jatrophe. Other reported activities encompass antiophidic effects, antiviral properties, and insecticidal action, highlighting its diverse biological utility. Despite its therapeutic promise, the inherent toxicity of *J. gossypiifolia*, largely attributed to compounds such as phorbol esters, necessitates careful consideration. Comprehensive toxicological assessments are therefore paramount for validating its safe use and for the development of standardized herbal preparations. This review consolidates findings to provide a foundation for future research aimed at isolating novel bioactive molecules and establishing evidence-based medicinal applications for *J. gossypiifolia*.

Keywords: *Jatropha gossypiifolia*; Phytochemistry; Pharmacological activity, Traditional medicine, *J. gossypiifolia*.

*Correspondence Info:

Dr. Kishor Danao
Associate Professor
Department of Pharmaceutical Chemistry,
Kamla Nehru College of Pharmacy,
Butibori, Nagpur-441108, Maharashtra, India

*Article History:

Received: 17/11/2025
Revised: 16/12/2025
Accepted: 18/12/2025
DOI: <https://doi.org/10.7439/ijpp.v15i1.5902>

QR Code

How to cite: Hattimare S, Danao K, Deotale A, Dhabarde D. and Baheti J. *Jatropha gossypiifolia* L.: Pharmacognostic, Phytochemical, and Pharmacological Insights. *International Journal of Phytopharmacy* 2025; 15(1): e5902. Doi: 10.7439/ijpp.v15i1.5902 Available from: <https://ssjournals.co.in/index.php/ijpp/article/view/5902>

Copyright (c) 2025 International Journal of Phytopharmacy. This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/)

1. Introduction

Plants have long served as a fundamental source of therapeutic agents, forming the basis of traditional medicine systems worldwide and contributing significantly to modern pharmacology. The vast biodiversity of plant species offers an expansive reservoir of secondary metabolites with diverse chemical structures and biological activities [1,2]. Among these, the genus *Jatropha*, belonging to the Euphorbiaceae family, has garnered considerable attention due to its widespread traditional uses and a growing body of scientific evidence supporting its medicinal potential. The name "Jatropha" itself, derived from Greek words "Jatros" (doctor)

and "trophe" (nutrition), alludes to its historical therapeutic applications [3].

Jatropha gossypiifolia L., commonly known as "bellyache bush" or "cotton-leaf physicnut," is a particularly prominent species within this genus. Native to Central and South America, it has naturalized and is widely distributed across tropical and subtropical regions, including Africa and Asia. Traditional medicine systems have long utilized various parts of *J. gossypiifolia* for a spectrum of ailments. These include its use as an anticoagulant, antihypertensive, anti-inflammatory, antibacterial, antiviral, and antifungal agent. Specific applications range from treating pneumonia,

dysentery, and inflammation to managing snakebites and other infectious diseases [4].

Contemporary scientific exploration of *J. gossypiifolia* seeks to validate these traditional claims through rigorous phytochemical analysis and pharmacological investigations. Such research is crucial for identifying the bioactive compounds responsible for its medicinal effects, understanding their mechanisms of action, and assessing the safety profile of the plant. While the plant offers significant therapeutic potential, it is also recognized for its toxic characteristics, which necessitates careful study and elucidation of its constituents. This article synthesizes existing knowledge on the pharmacognostic features, phytochemical composition, and pharmacological activities of *J. gossypiifolia* [5,6]. By consolidating these scientific findings, a clearer understanding of its therapeutic utility and the necessary considerations for its development as a source of novel medicinal agents can emerge.

Herbal medicines show promise with diverse therapeutic effects but face challenges like limited clinical trials, complex standardization, and potential interactions. Rigorous research and careful regulation are essential to ensure their safety, efficacy, and integration into modern healthcare [7].

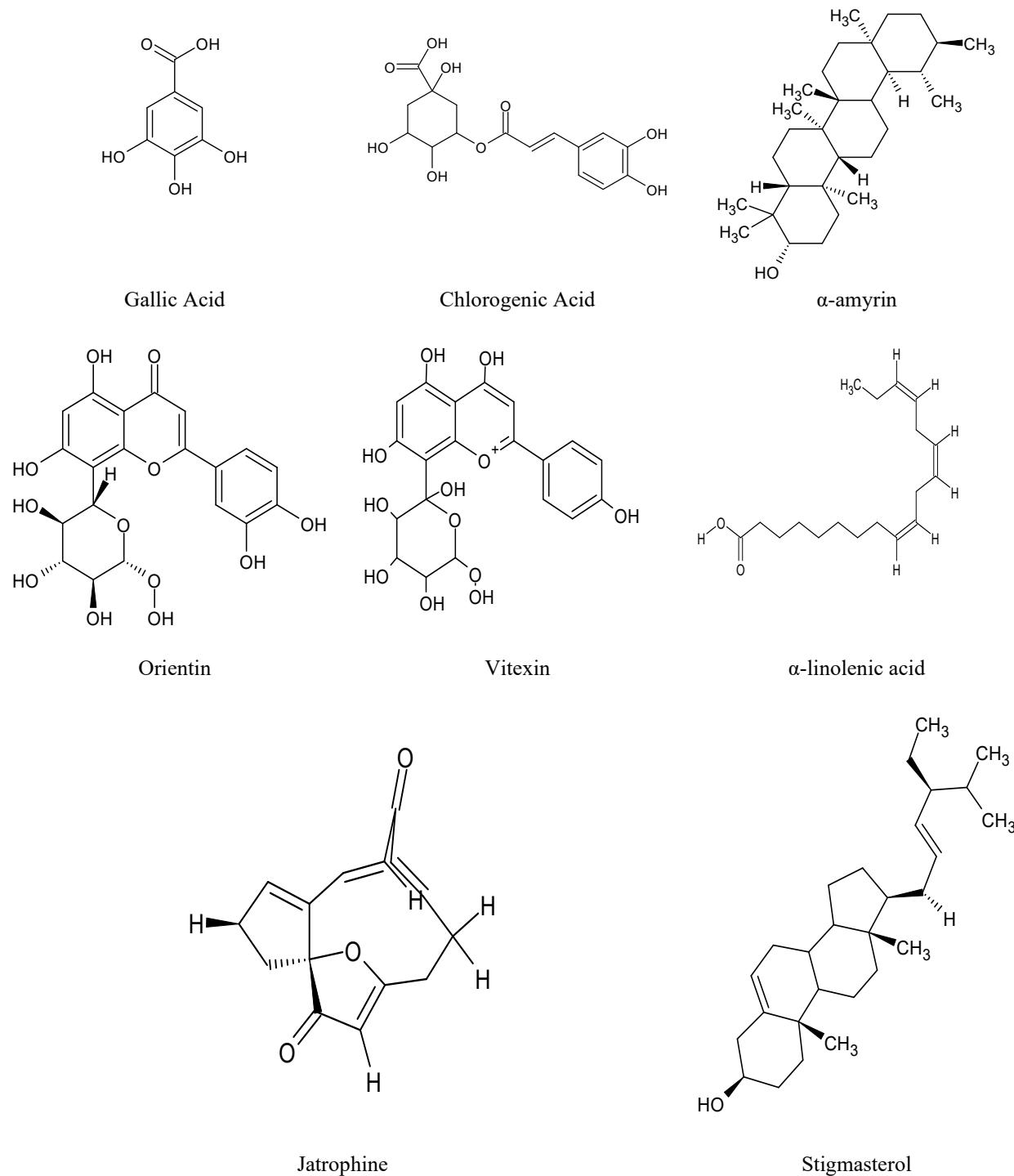
2. Pharmacognostic study of *Jatropha gossypiifolia*

Pharmacognosy involves the study of medicinal drugs derived from natural sources, focusing on their identification, cultivation, collection, preparation, and standardization. *Jatropha gossypiifolia* is a well-recognized species within this field due to its established traditional uses and distinct morphological characteristics [8,9].

2.1 Morphological Characteristics

Jatropha gossypiifolia is an ornamental and medicinal plant, native to Central and South America, but now widely distributed. It is characterized by its "bellyache bush" moniker, reflecting its traditional use in purgative applications. The plant typically exhibits a shrubby habit. Its leaves are distinct, often described as cotton-leaf-like, and are particularly important for identification. The flowers are frequently noted for their shiny red color, which contributes to its ornamental value. Various parts of the plant, including leaves, roots, latex, seeds, and fruits (Figure 1) are used in traditional preparations. The species has adapted well to diverse environmental conditions, allowing it to grow and bloom successfully in various regions [10-12].

Figure 1: Parts of *Jatropha Gossypiifolia L.* plant


2.2 Phytochemistry study of *Jatropha gossypiifolia*

The medicinal attributes of *Jatropha gossypiifolia* are intrinsically linked to its complex phytochemical composition. Extensive research has focused on isolating and characterizing the secondary metabolites present in various parts of the plant, which are responsible for its observed biological activities. These phytochemicals are derived from

different plant parts, including leaves, stems, roots, and latex, and serve as direct medicinal agents or lead molecules for drug development. *Jatropha gossypiifolia* L. contains a diverse range of chemical constituents [13,14], including; in Table 1 and the structure of some selective phytochemicals depicted in Figure 2.

Table 1: Phytochemicals present in *Jatropha Gassypiifolia L.*:

Class	Major Compounds	Biological Role	Reference
Phenolic compounds	Gallic acid, chlorogenic acid, catechin, caffeoic acid, vanillic acid, p-coumaric acid, ferulic acid, rutin, quercitrin, trans-cinnamic acid, quercetin, luteolin, apigenin, kaempferol, chrysins.	Antioxidants, anti-inflammatory, anticancer, antimicrobial, and cardioprotective.	[10,14,15]
Triterpenic compounds	α -amyrin, β amyrin, and lupeol.	Anti-inflammatory, antioxidant, anti-cancer, antidiabetic and cardioprotective.	[10,16,17]
Flavonoids and flavones	Orientin, isoorientin, vitexin, isovitexin, luteolin-7-O-glucoside, isoquercitrin, quercetin, apigenin, kaempferol, luteolin.	Modulate inflammation, oxidative damage, and cellular signaling pathways.	[10,14,18,19]
Fatty acids	α -linolenic acid, linoleic acid, palmitic acid, oleic acid, stearic acid, stearidonic acid.	Diverse roles in cell structure, signaling, metabolism, inflammation.	[10,20,21]
Alkaloids	Jatrophine (predominant in bark), Jatrophan, Gadain, Prasanthaline, Arylnaphthalene derivatives, Gossypifan, Jatrodien, Gossypiline, Gossypidien, Isogadain, 4'-O-Demethyl retrochinenin (noted in stems)	Analgesic, anti-inflammatory, antimicrobial, antioxidant, and anticancer.	[22-25]
Other compounds	Amino acids, coumarins, steroids, lignans, proteins, saponins, tannins, terpenoids, quinic acid, scopoletin, jasmonic acid, hydroxyoctadecatrienoic acid, hydroxyoctadecadienoic acid, dodecanedioic acid, undecanedioic acid, naringenin.	Antioxidant enzyme inhibition, gene expression modulation, antimicrobial, antidiabetic, anti-inflammatory, metabolism and neuroprotective.	[25-28]

Figure 2: Selective phytochemicals of *Jatropha gossypiifolia*

3. Pharmacological aspect of *Jatropha Gossypiifolia L.*:

The traditional uses of *Jatropha gossypiifolia* are substantiated by a growing body of pharmacological research demonstrating diverse biological activities. These activities are primarily attributed to the complex array of secondary metabolites identified within the plant [15,16].

3.1 Antimicrobial Activity

Extracts of *J. gossypiifolia* have exhibited significant antimicrobial efficacy against a range of pathogens. Ethanol extracts of both leaves and root bark have shown concentration-dependent antimicrobial activity against bacteria such as *Staphylococcus aureus*, *Escherichia coli*, *Klebsiella pneumoniae*, and *Bacillus subtilis*, as well as the fungus *Candida albicans*. Minimum Inhibitory

Concentration (MIC) values typically range from 50 to 260 mg/ml against susceptible organisms [17-19].

Studies have also confirmed activity against multi-drug resistant isolates, including *Acinetobacter baumannii*, *Enterobacter agglomerans*, and *Proteus mirabilis*, with zones of inhibition varying from 0 to 15 mm. The highest zone of inhibition for *J. gossypiifolia* extracts was observed against *Candida albicans*, reaching 29 ± 1.414 mm at 100 mg/ml. This broad-spectrum antimicrobial action supports the traditional use of the plant in treating various infections and suggests its potential as a source for novel antimicrobial agents [20-22].

3.2 Anti-inflammatory Activity

J. gossypiifolia possesses anti-inflammatory properties, aligning with its traditional use in managing inflammatory conditions. While direct studies on *J. gossypiifolia*'s anti-inflammatory mechanisms are ongoing, related species like *Jatropha cordata* have shown promising results. Ethyl acetate extracts of *J. cordata* bark, for example, demonstrated significant inhibition of nitric oxide (NO) production in LPS-activated RAW 264.7 macrophage cells without affecting cell viability. This suggests that the anti-inflammatory effect may involve modulating inflammatory mediators. Additionally, *Jatropha multifida* ethanolic leaf extracts demonstrated anti-inflammatory effects in carrageenan and histamine-induced paw edema models in rats, indicating a potential for similar mechanisms within the genus [23-25].

3.3 Anticancer Activity

Research indicates the cytotoxic potential of *J. gossypiifolia*, particularly through specific compounds. Jatrophe, isolated from the stem bark, has shown potent cytotoxic activity against various human cancer cell lines. For instance, jatrophe exhibited an IC₅₀ value of 3.2 μ M against human liver cancer cell line Hep G2 1886, which compares favorably to standard anticancer agents like sorafenib and arsenic trioxide. It also demonstrated activity against human colon cancer (WiDr), cervical cancer (HeLa), and stomach cancer (AGS) cell lines with IC₅₀ values of 8.97, 5.13, and 2.5 μ M, respectively. This suggests that *J. gossypiifolia*, through compounds like jatrophe, represents a promising candidate for anticancer drug discovery [26-28].

3.4 Antiophidic Activity

One significant traditional application of *J. gossypiifolia* is in the treatment of snakebites. Scientific studies have evaluated the antiophidic properties of its aqueous leaf extract, confirming its ability to counteract the effects of snake venom. The extract effectively inhibited enzymatic and biological activities induced by *Bothrops jararaca* snake venom both in vitro and in vivo [29,30].

Specific effects included the inhibition of blood incoagulability, reduction of hemorrhagic effects (up to

56%), and complete inhibition of edematogenic local effects when administered orally or intraperitoneally. The extract also nearly achieved 100% inhibition of myotoxic action. The antiophidic activity is potentially mediated by the inhibition of snake venom metalloproteinases (SVMPs) and serine proteinases (SVSPs), including fibrinogenolytic enzymes and thrombin-like enzymes, as well as catalytically inactive phospholipases A2 (Lys49 PLA2). Protein precipitating and antioxidant activities may also contribute to these effects [31,32].

3.5 Insecticidal and Larvicidal Activity

J. gossypiifolia also possesses insecticidal properties. Ethanolic senescent leaf extracts (SLEs) have demonstrated antifeedant effects on larvae of the noctuid pest *Spodoptera frugiperda* (armyworm larvae). While acute toxicity via topical application was relatively low, mixtures of *J. gossypiifolia* SLE with cypermethrin exhibited a strong synergistic effect, suggesting its utility in integrated pest management. The SLEs also inhibited P450, general esterase, and acetylcholinesterase activities both in vitro and in vivo, which are key detoxification enzymes in insects [33]. Furthermore, acetone leaf extracts of *J. gossypiifolia* have shown larvicidal efficacy against third and fourth stage *Culex quinquefasciatus* larvae. Larval mortality increased with extract concentration, with acetone extract demonstrating the highest mortality at 10 mg/ml (85% for third-stage larvae). Low LC₅₀ and LC₉₀ values for acetone leaf extract indicate its effectiveness, positioning *J. gossypiifolia* as a potential natural alternative for mosquito control. The insecticidal properties are partly attributed to toxic proteins found in the plant [34,35].

3.6 Other Activities

J. gossypiifolia has also been associated with antiviral activity and has been traditionally used as an antihypertensive and anticoagulant. The presence of diverse phytochemicals, including phenols and flavonoids, also contributes to its antioxidant capacity [36-38].

4. Specific Compounds and Analytical Techniques

Beyond broad classifications, specific bioactive molecules have been isolated and characterized. For instance, jatrophe, a compound isolated from the stem bark of *J. gossypiifolia*, has demonstrated significant cytotoxic activities against various human cancer cell lines, including Hep G2 liver cancer cells [39,40].

Advanced analytical methodologies are employed for the extraction and analysis of these bioactive compounds. Techniques such as High-Performance Liquid Chromatography (HPLC), Thin Layer Chromatography (TLC), Gas Chromatography-Mass Spectrometry (GC-MS),

and Nuclear Magnetic Resonance (NMR) spectroscopy are routinely used for qualitative and quantitative estimation. For example, GC-MS analysis of *Jatropha cordata*, a related species, identified fatty acids, fatty esters, phytosterols, alkanes, vitamin E, and terpenoids in hexane extracts, and similar constituents in ethyl acetate and methanolic extracts. While these findings are for a different *Jatropha* species, they illustrate the type of diverse chemical constituents that are typically found within the genus.

The presence of such a rich and varied phytochemical profile provides a strong basis for the observed pharmacological activities of *J. gossypiifolia*, simultaneously presenting challenges and opportunities for drug discovery. The identification of specific compounds, like jatrophe, underscores the potential for targeted therapeutic development [41,42].

5. Future Scope

Despite the extensive research on *Jatropha gossypiifolia*, several avenues for future investigation remain unaddressed, presenting opportunities for novel discoveries and the enhanced utilization of this plant. A thorough scientific exploration of its full potential requires a multi-faceted approach, balancing its therapeutic promise with concerns regarding toxicity.

6. Conclusion

Jatropha gossypiifolia L. stands as a plant of significant ethnobotanical and pharmacological interest, embodying a rich history of traditional medicinal application across various cultures. This review synthesized the available scientific evidence, highlighting its complex phytochemical composition and a broad spectrum of experimentally validated biological activities. The plant's therapeutic attributes are attributable to a diverse array of secondary metabolites, including alkaloids, flavonoids, tannins, terpenoids, saponins, phenols, steroids, and cardiac glycosides. Despite these promising findings, the inherent toxicity associated with certain *Jatropha* species, including *J. gossypiifolia*, necessitates a cautious approach. The presence of toxic compounds, such as phorbol esters, mandates rigorous toxicological studies to fully characterize its safety profile and establish safe therapeutic dosages. Moving forward, research efforts should prioritize the elucidation of molecular mechanisms of action, the isolation of novel bioactive compounds, and, critically, the conduct of comprehensive clinical trials to validate efficacy and safety in humans. The integration of traditional knowledge with modern scientific inquiry provides a robust framework for unlocking the full medicinal benefits of *J. gossypiifolia*. Through continued, systematic research, this plant could yield valuable contributions to the development of new

pharmaceutical agents, particularly in areas facing challenges such as antibiotic resistance or the need for novel anticancer treatments. However, such progress must be underpinned by a thorough understanding of its complex pharmacology and toxicology to ensure responsible and effective utilization.

Acknowledgments

Authors are thankful to Management and Dr. J.B.Baheti, Principal, Kamla Nehru College of Pharmacy, Nagpur for giving moral supports throughout the work.

Author Contributions

In the present paper, all authors have equally contributed and have given cooperation throughout to approve the manuscript. Kishor Danao, Shweta Hattimare and Akanksha Deotale have selected themes and Disha Dhabarde helped in manuscript preparation. All authors reviewed the final manuscript.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Data Availability

The authors have no financial or proprietary interests in any material discussed in this article.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics Approval

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Consent for Publication

All authors agree to publish the article.

References

- [1]. Félix-Silva J, Giordani RB, Silva-Jr AA da, Zucolotto SM, Fernandes-Pedrosa M de F. *Jatropha gossypiifolia* L. (Euphorbiaceae): A Review of Traditional Uses, Phytochemistry, Pharmacology, and Toxicology of This Medicinal Plant. Wu SB, editor. Vol. 2014, Evidence-Based Complementary and Alternative Medicine. Wiley; 2014. Available from: <https://doi.org/10.1155/2014/369204>
- [2]. Okiti AF, Osuntokun OT. Antimicrobial, Phytochemical Analysis and Molecular Docking (In-silico Approach) of *Tithonia diversifolia* (Hemsl.) A.

- Gray and *Jatropha gossypiifolia* L on Selected Clinical and Multi-Drug Resistant Isolates Journal of Advances in Microbiology. Sciencedomain International; 2020. p. 1–18. Available from: <https://doi.org/10.9734/jamb/2020/v20i630248>
- [3]. Dubey R, Rajhans S, Mankad AU. Preliminary Phytochemical Screening, Quantitative Estimation of Total Phenolic and Flavonoid Content of *Jatropha gossypiifolia* (L.). Vol. 12, Research Journal of Pharmacognosy and Phytochemistry. A and V Publications; 2020. p. 83. Available from: <https://doi.org/10.5958/0975-4385.2020.00015.1>
- [4]. Abid Aun Ali Z, M. Habeeb H, A. Jazaa L. Morphological, Anatomical And Chemical Study Of An Exotic Plant *Jatropha Integerrima* Jacq. 1763 (EUPHORBIACEAE) IN IRAQ. Vol. 17, Bulletin of the Iraq Natural History Museum. Iraq Natural History Research Center and Museum; 2022. p. 129–140. Available from: <https://doi.org/10.26842/binhm.7.2022.17.1.0129>
- [5]. Idowu AO, Igboekwe NH, Abiodun OA, Ofomata C. Herbal mouthwash formulated with the leaf extract of *Jatropha gossypiifolia* Linn. (Euphorbiaceae) exhibited in vitro antimicrobial activity against selected oral pathogens. Vol. 18, Journal of Pharmacy & Bioresources. African Journals Online (AJOL); 2021. p. 207–214. Available from: <https://doi.org/10.4314/jpb.v18i3.5>
- [6]. Utshudi AL, Oleko RO, Kayembe CT, Onautshu DO, Kitete EM, Lengbye EM, et al. Phytochemistry and Ethnopharmacology of *Jatropha gossypiifolia* L. (Euphorbiaceae): Bioactivities and Future Direction. International Journal of Pathogen Research. Sciencedomain International; 2022. p. 29–43. Available from: <https://doi.org/10.9734/ijpr/2022/v10i230246>
- [7]. Asep S, Hening H, Gema P S, Gigih S, Chicy Widya M, Sahidin S. Anticancer Activity of Jatrophe an Isolated Compound from *jatropha gossypifolia* Plant Against Hepatocellular Cancer Cell HEP G2 1886. Vol. 10, Biomedical and Pharmacology Journal. Oriental Scientific Publishing Company; 2017. p. 667–673. Available from: <https://doi.org/10.13005/bpj/1154>
- [8]. Bullangpoti V, Wajnberg E, Audant P, Feyereisen R. Antifeedant activity of *Jatropha gossypifolia* and *Melia azedarach* senescent leaf extracts on *Spodoptera frugiperda* (Lepidoptera: Noctuidae) and their potential use as synergists. Vol. 68, Pest Management Science. Wiley; 2012. p. 1255–1264. Available from: <https://doi.org/10.1002/ps.3291>
- [9]. Buduwara JH, Adiel T, Sami R, Tafem ML. Phytochemical Screening and Larvicidal Assessment of Bellyache Bush (*Jatropha gossypiifolia*) Leaf Extracts Against *Culex quinquefasciatus* Larvae. Vol. 42, Nigerian Journal of Parasitology. African Journals Online (AJOL); 2021. p. 19–24. Available from: <https://doi.org/10.4314/njpar.v42i1.3>
- [10]. Sarabia Ms, F. JB, Calalas Mr, S. AG, Gregorio Mr, P. J, et al. A Review on the Medicinal Uses and Toxicological Effects Of Herbal Plant *Jatropha Curcas* L. International Journal of Research Publication and Reviews. Genesis Global Publication; 2022. p. 3389–3408. Available from: <https://doi.org/10.55248/gengpi.2022.3.5.24>
- [11]. Calatayud PA, Munera DF, Calatayud S, Valencia-Jimenez A, Bellotti AC. *Jatropha gossypiifolia*(Euphorbiaceae), a Source of Proteins Toxic to *Phenacoccus herreni*(Sternorrhyncha: Pseudococcidae). Vol. 94, Florida Entomologist. Walter de Gruyter GmbH; 2011. p. 649–654. Available from: <https://doi.org/10.1653/024.094.0330>
- [12]. Jiménez-Nevárez YB, Angulo-Escalante MA, Montes-Avila J, Guerrero-Alonso A, Christen JG, Hurtado-Díaz I, et al. Phytochemical Characterization and In Vitro Anti-Inflammatory Evaluation in RAW 264.7 Cells of *Jatropha cordata* Bark Extracts. Vol. 12, Plants. MDPI AG; 2023. p. 560. Available from: <https://doi.org/10.3390/plants12030560>
- [13]. Anani K, Adjrah Y, Ameyapoh Y, Karou S, Agbonon A, de Souza C, et al. Antimicrobial, Anti-inflammatory and antioxidant activities of *Jatropha multifida* L. (Euphorbiaceae). Vol. 8, Pharmacognosy Research. Manuscript Technomedia LLP; 2016. p. 142. Available from: <https://doi.org/10.4103/0974-8490.172657>
- [14]. Sharma S, Chatterjee A. Impact of herbal medicine on human health: a review of scientific and clinical evidence highlighting the roles of phytochemicals in boosting immunity, reducing inflammation, improving cognitive function, and managing various ailments. Clin Res Stud. 2025;4(3). doi:10.31579/2835-2882/084.
- [15]. Balkrishna A. Exploring the safety, efficacy, and bioactivity of herbal remedies in modern healthcare. Front Med. 2024; doi:10.14218/FIM.2023.00086.
- [16]. Wachtel-Galor S. Herbal medicine: biological activities and potential protective effects. NCBI Bookshelf; 2011.
- [17]. Salm S, et al. Review of clinical benefits of herbal medicines highlighting positive effects on psychosomatic disorders, gynecological complaints, and infections. Front Pharmacol. 2023;14:1234701. doi:10.3389/fphar.2023.1234701.

- [18]. Singh MP. Therapeutic efficacy and cost-effectiveness of herbal drugs: a scientific review. *Sci Direct*. 2024.
- [19]. Sharma S, Chatterjee A. Impact of herbal medicine on human health. *Clin Res Stud*. 2025;4(3). doi:10.31579/2835-2882/084.
- [20]. K.R. Mangalam University. Herbal drugs vs. modern medicines. 2024.
- [21]. Salm S, et al. Current state of research on the clinical benefits of herbal medicines. *Front Pharmacol*. 2023.
- [22]. World Health Organization (WHO). Report on traditional medicine contributing to conventional medicine. Geneva: WHO; 2023.
- [23]. Félix-Silva J, Giordani RB, Silva-Jr AA, Zucolotto SM, Fernandes-Pedrosa MF. *Jatropha gossypiifolia L.* (Euphorbiaceae): a review of traditional uses, phytochemistry, pharmacology, and toxicology. *Evid Based Complement Alternat Med*. 2014;2014:369204. doi:10.1155/2014/369204.
- [24]. Wu Q, Li Z, Qiu S, Yu Y. *Jatropha gossypiifolia L.* and its biologically active compounds: chemistry, pharmacology, and toxicology. *J Ethnopharmacol*. 2019;234:25–32. doi:10.1016/j.jep.2018.12.004.
- [25]. Pande MS, Trivedi N, Kumar B. Review on medicinal properties of *Jatropha gossypiifolia L.* *J Pharm Res Int*. 2021;33(46B):505–511. doi:10.9734/jpri/2021/v33i46B32968.
- [26]. Babyvanitha S, Jaykar B. Pharmacological review of *Jatropha gossypiifolia* and *Senna alata*. *Int J Bot Stud*. 2020;5(5):323–328.
- [27]. Silveira RS, Peralta RM, Miranda CC, Silva JGF, Brandão MGL, Ruiz ALT G. Determination of phenolic and triterpenic compounds in *Jatropha gossypiifolia L.* by UHPLC-MS/MS. *Braz J Pharm Sci*. 2020;56:e17262. doi:10.1590/s2175-97902020000117262.
- [28]. Islam M, Islam A, Hossain MS, Rokeya B. Biological investigation of *Jatropha gossypiifolia*: a stiff medicinal plant in Bangladesh. *Iran J Pharm Sci*. 2017;13(1):35–48.
- [29]. Zhang CY, Pan RR, Zhang XD, Zhou Y, Ye Y, Xia J, Rahman K, Zhang H, Zhu JY. New tetracyclic triterpenoids from *Jatropha gossypiifolia* induce cell-cycle arrest and apoptosis in RKO cells. *Fitoterapia*. 2018;130:145–151. doi:10.1016/j.fitote.2018.08.027.
- [30]. Jiang H, et al. New tetracyclic triterpenoids from *Jatropha gossypiifolia* induce cell-cycle arrest and apoptosis in RKO cells. *Fitoterapia*. 2018;129:98–106.
- [31]. Narwade M, et al. Detection of flavonoids from *Jatropha gossypiifolia L.* var. elegans Muell. Arg. *J Ecobiotechnol*. 2010;2(6):14–16.
- [32]. Vidhya R, et al. Phytochemical analysis and isolation of quercetin, a key flavonoid from *Jatropha gossypiifolia* leaf extract, demonstrating potential pharmacological activities. 2017.
- [33]. Barros R, et al. Fatty acid profiles of *Jatropha curcas L.*, *Jatropha mollissima*, and *Jatropha gossypiifolia L.* *Ind Crops Prod*. 2015;73:106–108.
- [34]. Rosa L, et al. Characterization and structure elucidation of hydroxy fatty acids in *Jatropha gossypiifolia* seed oils: applications and biological properties. *Ind Crops Prod*. 2014;53:206–215.
- [35]. Arjuna R, et al. Chemical composition and biological properties of *Jatropha gossypiifolia*. PMC. 2021.
- [36]. *Jatropha gossypiifolia L.* (Euphorbiaceae): a review of phytochemical and pharmacological activities. PMC. 2014.
- [37]. de Araújo A, et al. *Jatropha gossypiifolia L.* and its biologically active metabolites: a mini review. *Phytochemistry and Pharmacology*. 2019.
- [38]. Yerramsetty P, et al. Phytochemicals of *Jatropha gossypiifolia* (Linn.): a review. *Int J Innov Sci Res Technol*. 2020.
- [39]. Pande MS, Trivedi N, Kumar B. Review on medicinal properties of *Jatropha gossypiifolia L.* *J Pharm Res Int*. 2021;33(46B):505–511.
- [40]. Raj A, Gupta MK. Exploring the anticancer properties of phytochemicals from *Jatropha gossypiifolia*. *Int J Res Sci Innov*. 2025; doi:10.51244/IJRSI.2025.12050005.
- [41]. Preliminary phytochemical screening and estimation of total phenolic and flavonoid content in *Jatropha gossypiifolia* leaves. *Int J Pharm Sci Rev Res*. 2020.
- [42]. Dubey R, Rajhans S, Mankad AU. Phytochemicals of *Jatropha gossypiifolia* (Linn.): a review. *Int J Innov Sci Res Technol*. 2020;5(3):904–912.