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Abstract 
Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors that regulate many physiological 

processes. Recent studies have implicated PPARs in the control of fibrosis.  In particular, agonists of PPAR have been found 

to have antifibrotic effects on a number of tissues including the lung, heart, and liver. This antifibrotic effect is related to the 

inhibition of TGF-β/ Smad signal transduction including other pathways that still remain unidentified. This review focuses on 

PPAR and its mode of activation in relation to fibrosis.  
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1. Introduction 

1.1 Peroxisome Proliferator Activated Receptors 

The PPARs are members of the large steroid/retinoid 

nuclear receptor family. To date, three sub-forms of PPARs 

have been identified, including PPAR-α, β/δ, and  [1-3]. 

PPARs, like other nuclear receptors, contain several structural 

and functional domains. They consist of an N-terminal 

activation domain, a DNA binding domain (DBD) that 

consists of 2 zinc finger-like domains. The first zinc finger 

specifically recognizes the PPAR response element. The 

second zinc finger helps in heterodimerization with the 

retinoid X receptor, as well as interaction with corepressors 

and coactivators. The C-terminal ligand-binding domain helps 

in nuclear localization and ligand binding leading to ligand 

dependent activation [4]. The DNA binding and ligand-

binding domains have been well characterized. The DBD of 

three PPARs recognize the PPRE region in genes and ligand 

binding domain responds to different ligand. 

Each of the PPAR isotypes is encoded by a separate 

gene. The wide spread physiological roles of the different 

PPARs is explained in part by their tissue expression pattern. 

PPARα is expressed in metabolically active, energy-requiring 

tissues, including heart, liver, skeletal muscle, and kidney [3, 

5-8]. PPARβ/δ has a broader expression pattern, essentially 

expressed in all cell types and tissues suggesting a 

fundamental role in physiology [6, 9]. PPAR exists in two 

isoforms. One of the isoforms has broad expression pattern, 

whereas the other one is expressed predominantly in adipose 

tissue [10-12]. 

All three PPAR isoforms have distinct as well as 

overlapping sets of endogenous and exogenous ligands. 

Endogenous ligands, probably generated by fatty acid 

metabolism, act as lipid sensors and regulate fatty acid 

metabolism, as well as other functions such as their role in 

inflammatory responses, vascular biology, cell differentiation 

and proliferation, and tissue repair [8, 13]. The distribution 

and abundance of circulating and cellular fatty acids depends 

on pathophysiological conditions [14-16].  

1.2 PPAR  

PPAR functions as a master transcriptional 

regulator of metabolism. It is required to induce adipogenesis 

[17]. Its activity has been shown to be regulated by binding of 

lipid metabolites, various vitamins, steroid & thyroid 

hormones, and thiazolidinediones [18]. PPAR activation 

enhances regulation of adipocyte differentiation and the 

uptake and storage of fatty acid [8, 13, 19-21]. PPAR exists 

in two isoforms (1 and 2) [13]. The two distinct isoforms of 

PPAR are created by alternate promoter usage and splicing 

of the 5’ end exons of the gene [11, 19]. PPAR2 has an 

additional 28 (human) amino acids at its amino terminus, 

creating a ligand-independent activation domain that makes 

isoform 2 a stronger transcriptional activator compared to 

isoform1 in all tissues expressing it [22]. PPAR1 has a broad 
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expression pattern that extends to the brain, vascular cells, 

and few types of immune and inflammatory cells [10, 11]. 

Although PPAR2 is predominantly expressed in adipose 

tissues, also liver and skeletal muscle expresses PPAR2 at 

low levels [10, 12, 23]. PPAR activation can be induced by 

its interaction with coactivators or release of repressors. The 

interactions of PPAR with different regulatory molecules 

decide its gene-specific effects including its role as a key 

transcriptional regulator in inducing antifibrotic genes. 

1.3 Mechanism of PPAR activation 

DNA binding of PPARγ requires its 

heterodimerization with the 9-cis retinoid X receptor (RXR) 

[24, 25]. The PPAR-RXR complex binds to sequence 

specific promoter regions of DNA, known as PPREs. The 

preferred PPRE consists of two direct repeats, i.e. 5’-

AGGTCA-3’, separated by a single nucleotide. Several other 

nuclear transcription factors such as hepatocyte nuclear 

receptor-4 (HNF-4), chicken ovalbumin upstream promoter 

transcription factor (COUP-TF), apolipoprotein regulatory 

protein 1 (ARP-1), and retinoic acid receptor (RAR) dimers 

also bind to DR-1 elements. The differential preference in 

binding of various homodimers and heterodimers to PPRE is 

regulated by a sequence of the core motif and spacer 

nucleotide(s) [26]. The transcriptional activity of these 

receptors correlates with their relative in vitro affinity to the 

promoter that in turn depends on the specific arrangement of 

nucleotides in promoter [26, 27].  

The heterodimeriztion of PPAR with RXR and 

transcriptional activation on binding with PPRE is not only 

regulated by the binding of endogenous or exogenous ligands, 

but is also regulated by coactivators and corepressors. Many 

coactivators, such as PGC1α, pCAF, p300 and CBP modulate 

the activity of PPAR [21, 28]. The ligand binding to PPAR 

causes a conformational change, to facilitate its interaction 

with these coactivators. The coactivators form a bridge 

between the nuclear receptors and the transcription initiation 

machinery. Some coactivators like PGC1α, p300 and CBP 

have histone acetylase activity [21, 28]. Upon forming the 

transcriptional complex, they disrupt the nucleosome complex 

and “open up” chromatin structure to initiate the 

transcriptional machinery at PPRE. Most of the coactivators 

require ligand binding to PPAR to form the complex, so as to 

start transcription initiation at PPRE. Similarily, PPAR 

corepressors such as NCORs and SMRT have histone 

deacetylase activity to block the initiation of transcription. In 

the case of corepressors, ligand-binding causes a 

conformational change in the PPAR that allows the exchange 

of corepressors for coactivators [29].     

1.4 PGC1α and pCAF: ligand-independent coactivators of 

PPAR. 

PPAR activation can be ligand-dependent or ligand-

independent. The activation of PPAR involves not only 

ligand binding, but release of corepressors and/or recruitment 

of coactivators of PPAR [30]. Ligand-induced PPAR 

activation requires binding of an agonist that facilitates 

PPAR-RXR heterodimerization and then the docking of 

coactivators [31]. Ligand-independent docking is also known 

to be induced by PPAR coactivators such as PGC1α and 

pCAF [32]. These coactivators bind to PPAR in a ligand- 

independent manner, and activate PPAR on a specific subset 

of promoters to selectively express PPAR target genes. 

Expression of PGC1α has been shown to be induced by 

CREB [33]. Similarly, stimulation of p38 MAPK directly 

phosphorylates the PGC1 protein, resulting in its activation 

and stabilization [34]. Activated PGC1α interacts with the 

histone acetyltransferase complex to facilitate initation of 

transcription complex at the gene promoter [34, 35]. 

Similarily, pCAF also associates with other initation 

machinery having histone acetyl transferase activity. This 

indicating that these coactivator proteins play a direct role in 

transcriptional regulation [32]. 

 

2. PPAR and fibrosis 

Recent studies have implicated PPAR in the control 

of fibrosis [36-38]. In vitro and in vivo studies show the 

potentially exciting role of PPAR as novel therapies for 

fibrosis of organ systems prone to scarring. Treatment with 

PPAR ligands, or forced expression of PPARγ, suppresses 

fibrosis in organs such as heart, liver, kidney, and lung [36, 

39, 40]. PPAR and its ligands, including the 

thiazolidinediones, have been studied for their potential 

antifibrotic role on hepatic fibrosis in rat, pulmonary and 

cardiac fibrosis in rats, and kidney fibrosis in mice and rats 

[39]. In studies of experimentally-induced liver fibrosis by 

carbon-tetrachloride, PPAR agonists reduced profibrotic 

differentiation of fibroblasts in vitro and reduced organ 

scarring in animal models of fibrosis [38, 39]. Activation of 

cellular PPARγ receptors using either synthetic or natural 

PPARγ ligands blocks the induction of profibrotic 

responses in skin and lung fibroblasts with rosiglitazone and 

inhibited TGF-β-induced stimulation of collagen and 

fibronectin synthesis, myofibroblast differentiation, fibroblast 

migration. Rosiglitazone also induced differentiation of 

mesenchymal progenitor cells into adipocytes instead of 

fibroblasts. PPARγ ligands ameliorated carbon tetrachloride 

induced liver fibrosis in mice, attenuated cardiac fibrosis and 

diabetic renal fibrosis, and attenuated lung fibrosis, attenuated 

skin fibrosis in bleomycin injected animal model of 

scleroderma. 

2.1 PPAR and Liver Fibrosis 

Hepatic Stellate Cells (HSC) are major mediators of 

the fibrotic process in liver during the wound healing process. 

HSC reside in the space of Disse between hepatocytes and the 

heapatic sinusoids [41]. In normal uninjured liver, HSC are 

quiescent cells that store vitamin A.  As a result of injury, 

HSCs activate or transdifferentiate to a myofibroblast-like 

cell that is characterized by having a different phenotype and 
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properties, including loss of normal retinoid-storing capacity, 

changes in cellular morphology and cytoskeletal organization, 

enhanced cell migration, adhesion, contractibility and 

proliferation, expression of α-SMA and acquisition of 

fibrogenic properties [42-44]. The expression of matrix-

degrading enzymes such as matrix metalloproteinases 

(MMP)-1 and MMP 13 that degrade fibrillar collagen and 

MMP2 and MMP9 that degrade basement membrane collagen 

is reduced. Simultaneously, expression of tissue inhibitors of 

metalloproteinases (TIMPs) is increased [45]. Hence chronic 

liver injury leads to overall changes in expression of enzymes 

involved in matrix degradation resulting to a state towards 

accumulation of collagen and hepatic fibrosis.  Relaxin and 

activators of PPAR have been shown to prevent the activation 

of activated HSC, bringing them back to quiescent stage and 

thus preventing progressive hepatic fibrosis [46-48].   

In hepatic stellate cells, treatment with PPAR 

agonists reversed the myofibroblastic phenotype to the 

quiescent, lipid storing form [49]. In PPAR knockout mice, 

the severity of liver fibrosis was increased, whereas the 

overexpression of PPAR or treatment with its ligand reduced 

fibrotic markers such as alpha smooth muscle actin, collagen 

and TIMPs, and increased MMPs in liver [38, 50]. Most of 

the effects of PPAR agonists were similar to those of 

relaxin[50-54]. Though PPAR agonists reduce fibrosis and 

are effective in initial stage of fibrosis, their action seems 

ineffective on established rodent models of hepatic fibrosis 

[55]. A mechanism to restore sensitivity to PPAR agonists 

would possibly provide a treatment in established fibrosis. 

2.2 PPAR and Lung Fibrosis 

Lung fibrosis occurs in a many diseases, including 

systemic sclerosis. Fibrotic remodeling of lung could occur in 

asthma, and other obstructive pulmonary disease 

characterized by inflammatory cell infiltration such as 

macrophages and activation of myofibroblasts to deposit 

excessive collagen and change the lung architecture[56]. 

Reduced PPAR expression was shown in lung 

fibroblasts suggesting that decreased PPAR activity 

contribute to dysregulated immune response and fibrosis. 

Ligands of PPAR downregulates lung fibroblasts activity, by 

inhibiting their proliferation and migration. PPAR agonists 

effects TGF-β to inhibit lung fibroblast transdifferentiation 

and significantly reduced expression of collagen 1[57]. TGF-

β have been shown to downregulate the expression of PPAR 

through Smad3 signaling and this effect was overcome in 

Smad3 deficient fibroblasts. In vivo studies have shown that 

PPAR agonists such as rosiglitazone are able to inhibit lung 

fibrosis [58]. The agonists were able to reduce inflammatory 

markers of fibrosis and improved lung architecture. In short, 

PPAR agonists inhibited Smad3 dependent TGF-β pathway 

to reduce collagen accumulation in injured animal 

models[46]. 

 

 

2.3 PPAR and Cardiac Fibrosis 

Cardiac fibrosis is an outcome of different 

cardiovascular diseases resulting in abnormal accumulation of 

extracellular matrix in the myocardial interstitium. The matrix 

composition of collagens and elastic fibers is derived mainly 

from fibroblasts. In normal conditions, matrix maintains the 

normal structure and function of the heart but in diseased state 

matrix metalloproteinases decreases and inflammatory 

molecules such as cytokines and TGF-β increases to invade 

the tissue resulting in extracellular matrix deposition leading 

to cardiac fibrosis leading to arrhythmia and heart failure, and 

cardiac arrest[59]. 

Interestingly, PPAR has been studied to have the 

function of antimyocardial fibrosis. Treatment with the 

PPAR activators resulted in the reduction of ECM deposition 

and cardiac fibrosis, while PPAR antagonist GW9662 

reversed these changes[60]. PPAR has a wide range of 

effects in regulating metabolism, reducing inflammation, 

inhibiting apoptosis and oxidative stress, and enhancing 

endothelial function. Though, the underlying effects have not 

yet been fully understood, all of these functions are helpful in 

preventing the cardiac function. Genetic mutation in PPAR 

have shown to induce cardiac fibrosis and increased 

hypertension[61]. Similarly, decrease in mRNA and protein 

expression of PPAR induced myocardial interstitial fibrosis 

and vice versa. The agonists induced activation of PPAR to 

not only inhibit the expressions of TGF-β but also the 

phosphorylation of Smad2/3. 

 

3.Conclusion 

A number of different mechanisms have been 

implicated in the pathogenesis of progressive fibrogenic 

disorders. Novel therapeutic agents based on the paradigm of 

limiting excessive secretion of ECM, have produced 

promising results in pre-clinical disease models of fibrosis, 

trying to reverse the diseases state and restore normal 

architecture of effected organs and tissues. The nuclear 

hormone receptor PPAR have emerged as a regulatory 

molecule of interest in the pathogenesis and treatment of 

fibrosis. PPAR signaling have been implicated in initiating 

endogenous mechanism, to prevent excessive fibrogenesis 

following injury, and negatively regulate profibrotic signal-

that would otherwise induce collagen synthesis. PPAR 

signaling and identification of pharmacological targets as 

combinatorial targets might lead to novel therapeutic 

approaches to the treatment of fibrosis.  
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