

Evaluation of Petrol fumes on Hepatic Enzymes activities in albino rats

Adegoke O.A.¹, George Opuda I.M.², Awopeju T.A.³ and Ugwuoke C.F.¹

¹Department of Medical Laboratory Science, Madonna University, Elele, Nigeria

²Department of Medical Laboratory Science, Rivers State University, Port Harcourt Nigeria

³Department of Medical Microbiology, University of Port Harcourt, Port Harcourt Nigeria

Abstract

The study was carried out by exposing 35 albino rats divided into seven (7) groups of five (5) rats each to petrol fumes respectively at concentrations (Parts per Minute) of 0.00, 16,737 for 5 minutes daily, 20,240 for 10 minutes daily, 23,077 for 15 minutes daily, 27,344 for 20 minutes daily, 30,920 for 25 minutes daily and 34,458 for 30 minutes daily for 21 days using a modified nose-inhalation exposure method. Alanine aminotransferase (ALT) and Aspartate aminotransferase (ALT) activities were determined by Reitman-Frankel method while Alkaline Phosphatase (ALK PHOS) activity was determined by Phenolphthalein Monophosphate Method. The data were subjected to statistical analysis using statistical package for social sciences (SPSS) version 21. There was significant difference ($P<0.05$) in Aspartate amino transferase (U/L) of 12.8 ± 1.83 , 14.6 ± 2.16 , 15.6 ± 2.16 , 19.0 ± 2.35 , 20.2 ± 2.13 , 23.2 ± 3.35 and 25.8 ± 3.68 respectively and Alanine amino transferase (U/L) was 13.2 ± 0.58 , 20.0 ± 1.41 , 24.2 ± 1.43 , 28.8 ± 2.42 , 32.2 ± 1.56 , 31.6 ± 2.79 and 34.8 ± 2.15 at petrol concentration (ppm) of 0.00, 16,737, 20,240, 23,077, 27,344, 30,920 and 34,458 respectively while there was no significant difference ($P>0.05$) in Alkaline phosphatase (U/L) was 38.2 ± 0.92 , 47.4 ± 4.64 , 50.4 ± 6.04 , 62.0 ± 11.02 , 55.8 ± 1.85 , 54.8 ± 1.59 and 59.6 ± 3.06 at petrol concentrations (ppm) of 0.00, 16,737, 20,240, 23,077, 27,344, 30,920 and 34,458 respectively. Overall there was significant difference ($P<0.05$) in Alkaline Phosphate (U/L) activities of 38.2 ± 0.92 in control groups and 55.0 ± 2.31 in petrol fumes and Aspartate amino transferase (U/L) activities of 12.8 ± 1.83 in control groups and 19.7 ± 1.24 in petrol fumes while Alanine amino transferase (U/L) activity of 13.2 ± 0.58 was significantly different ($P<0.05$) from 28.6 ± 1.20 in petrol fumes group. The result of this study indicated that petrol fumes may impair liver functions in rats suggestive that petrol fumes can cause damage to the Liver.

Keywords: Hepatic, Enzymes, Petrol, fumes.

*Correspondence Info:	*Article History:	QR Code
Dr Adebayo O. Adegoke Department of Medical Laboratory Science, Madonna University, Elele, Nigeria	Received: 05/06/2020 Revised: 23/07/2020 Accepted: 23/07/2020 DOI: https://doi.org/10.7439/ijbar.v11i7.5435	

How to cite: Adegoke O.A., George Opuda I.M., Awopeju T.A. and Ugwuoke C.F. Evaluation of Petrol fumes on Hepatic Enzymes activities in albino rats. *International Journal of Biomedical and Advance Research* 2020; 11(07): e5435. Doi: 10.7439/ijbar.v11i7.5435 Available from: <https://ssjournals.com/index.php/ijbar/article/view/5435>

Copyright (c) 2020 International Journal of Biomedical and Advance Research. This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/)

1. Introduction

Petrol or Gasoline is a transparent, petroleum derived liquid that is used primarily as a fuel in spark-ignited internal combusting engines. It is a petroleum derived mixture of over 500 hydrocarbons that may have between 3-12 carbon atoms [1]. It is derived during fractional distillation process and has a translucent liquid form. It's not used in its crude form. Different additives are added like ethanol to use it as fuel for passenger vehicles. The major sources of exposure to petrol are oil refineries,

oil fields, petrol filling stations, petrochemical industries, motor mechanical workshops and machines powered by two stroke engines [2-4]. Occupationally exposed individuals as well as those residing in a heavy traffic area constitute the population at greater risk of frequent and long term exposure to constituents of petrol [4]. It has been estimated that about 110 million individuals are exposed to petrol during the process of refueling at self-service filling stations [5]. Although the composition and characteristics

of gasoline depend on the origin of the crude oil, differences in the processing methods and blends, seasonal variations as well as additives such as oxygenates that are required to meet a specific engine performance [6].

Some of the major components of gasoline of health concern are Benzene, Toluene, and Xylene and are abbreviated as BTX [7]. These compounds are also known as volatile organic compounds (VOC) [8]. Several studies have reported that significant exposure to benzene exists during self-refueling of cars at service stations [9, 10]. It has been estimated that for every 30 litres of gasoline containing 5% benzene that is pumped during the process of refueling, about 700mg of benzene is vaporized [11]. Significant levels of other VOCs such as toluene and xylene have been found in the blood of both petrol station attendants and individuals who self-refuel their vehicles [8, 10, 12]. The risk of exposure to these VOCs among petrol station attendants is significantly related to the duration and the volume of petrol pumped in a given period [7, 8].

The liver is the largest gland in the body and has a wide variety of functions. Weight is: 1/50 of body weight in adult & 1/20 of body weight in infant. It is exocrine (bile) & endocrine organ (Albumen, prothrombin & fibrinogen). It is situated in the right upper quadrant of the abdomen. It occupies the right hypochondrium and epigastrium and also extends to the left hypochondrium. It is covered by Glisson's capsule, a visceral continuation of the peritoneum. The greater part of the liver is situated under cover of the right costal margin. The Diaphragm separates it from the pleura, lungs, pericardium, and heart. The lobes of the liver include; right and left lobe, and 2 accessory lobes; quadrate and caudate lobe. The right lobe is six times larger than left lobe [13].

The aim of this study is to determine the effect of petrol fumes on hepatic function in male albino wistar rats using hepatic enzymes such as aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) as indicators.

2. Materials and Method

2.1 Animals

Fifty-five (55) male albino wistar rats weighing about 177.20-198.80g were obtained from animal house of Pharmacology Department of University of Port Harcourt. The rats were housed in a wire meshed cage *ad libitum* (12 hours light and 12 hours darkness cycles) at standard temperature of 35-37°C and were fed rat pellets and water.

2.2 Reagents

Commercially prepared reagents for Alanine amino transferase and Aspartate amino transferase were purchased from Randox Diagnostics, London while Alkaline phosphatase reagent was purchased from Quimica Chinica Aplicada, Spain.

2.3 Petrol

The petrol sample was obtained from the Nigerian National Petroleum Corporation (N.N.P.C) zonal office at Moscow road, Port Harcourt.

2.4 Method for LC₁₀₀

Preliminary study was done to determine the LC₁₀₀ and LC₅₀ of petrol fumes on the rats. Twenty albino rats were divided into four groups of 5 rats each and exposed to 500ml of Petrol fumes for 0hour, 4hours, 6hours and 8hours for 14 days. Physical changes (weakness, abnormal movement, and diarrhea), Behavioral changes (aggressiveness, rotational movement, biting and hyperactivity) and death were observed. The LC₅₀ was calculated based on Arithmetic method of Karber [14].

2.5 Animal studies

The 35 albino rats used were divided into 7 groups of five rats each. The animals were acclimatized for six weeks and fed *ad libitum* with normal rat food and water at 12 hours daylight and 12 hours of darkness before commencement of studies.

2.5.1 Experimental design

An animal model consisting of 35 rats was used; they were divided into seven (7) groups containing five (5) rats each and were exposed to petrol fumes at petrol concentrations (Parts per Minute) 0.00, 16,737, 20,240, 23,077, 27,344, 30,920 and 34,458 ppm for groups 1, 2, 3, 4, 5, 6 and 7 respectively. Signs of toxicity due to petrol fumes were observed in the rats such as grooming, sniffing around the cage, and standing on their hind legs also hyperactivity and weakness. The Group 1 served as the control and was not exposed to petrol fumes, Group 2 were exposed to 16,737ppm of petrol fume for 5 minutes daily, Group 3 were exposed to 20,240ppm of petrol fume for 10 minutes daily, Group 4 were exposed to 23,077ppm of petrol fume for 15 minutes daily, Group 5 were exposed to 27,344ppm of petrol fume for 20 minutes daily, Group 6 were exposed to 32,047ppm of petrol fume for 25 minutes daily and Group 7 were exposed to 34,458ppm of petrol fume for 30 minutes daily for 21 days. The Exposure to petrol fumes was carried out using a modified nose-inhalation exposure method [15]. According to this modification, the cages housing the animals in the test groups were placed in respective exposure chambers (1 cage per chamber), each with one open calibrated beaker of 1000mls containing 500mls of petrol. The petrol was allowed to evaporate freely within the respective exposure chambers at ambient humidity and temperature for an hour and test animals in cages were exposed to fumes generated from direct evaporation of petrol. The animals were exposed at 5 minutes time interval for 30 minutes/day after saturation of chamber with fumes, 7 day/week to fumes for 21 days. At the end of each exposure day, the animals were transferred to petrol fumes-free section of the experimental

animal house. During the exposure period, the initial and final volumes of petrol were respectively recorded before and after daily exposure. The daily differences in volume were used to estimate relative concentrations of fumes used in this exposure method.

2.5.2 Sample collection

After three weeks of exposure, all the rats were sacrificed by chloroform sedation. Each of the animals was slaughtered and blood samples from each animal were collected into plain containers; Blood samples collected into plain containers were allowed to stand for about 15 minutes to clot and further spun in a centrifuge. Serum was separated from the clot with Pasteur pipette into sterile sample tubes for the measurement of selected hepatic enzyme activities.

2.5.3 Biochemical analysis

Alanine aminotransferase and Aspartate aminotransferase activities were determined by Reitman-Frankel method. Alanine aminotransferase was measured by monitoring the concentration of pyruvate hydrazone formed with 2, 4, dinitrophenylhydrazine (α -oxoglutarate + L-alanine $\xrightarrow{\text{GPT}}$ L-glutamate + Pyruvate) while Aspartate aminotransferase was measured by monitoring the concentration of pyruvate hydrazone formed with 2, 4, dinitrophenylhydrazine (α -oxoglutarate + L-aspartate $\xrightarrow{\text{GOT}}$ L-glutamate + oxaloacetate) [16].

The test tubes were respectively labeled blank, sample, control blank and control. 0.5ml of buffer solution was dispensed into all the test tubes, 0.1ml of sample and control into test tubes labeled sample and control respectively. All the tubes were incubated at 37°C for 30minutes. 0.5ml of 2, 4 dinitrophenylhydrazine was dispensed into all test tubes. 0.1ml of sample was dispensed into test tube labeled blank, while 0.1ml of control was dispensed into control blank tube. The contents of each test tube was mixed and allowed to stand for 20minutes at 25°C. 5ml of 0.4N sodium hydroxide was added to each tube, mixed and read at 550nm against the sample blank prepared. The value of the unknown was extrapolated from the calibration curve already prepared.

Alkaline Phosphatase activity was determined by Phenolphthalein Monophosphate Method. Serum alkaline phosphatase hydrolyses a colourless substrate of phenolphthalein monophosphate giving rise to phosphoric acid and phenolphthalein which at alkaline PH values turns into pink colour which can be photometrically determined at 550nm [17]. The test tubes were respectively labeled sample, standard and control. 1.0ml of distilled water was pipetted into each tube followed by a drop of the substrate into each test tube. All the test tubes were incubated at 37°C for 5minutes. 0.1ml of sample, standard and control were dispensed into their respective labeled test tubes. The test tubes were incubated at 37°C for 20minutes. 5ml of colour developer was added to each test tube, mixed, and read at 550nm using water as blank. The concentration of Alkaline Phosphatase (U/L) was determined by multiplying the absorbance of test with concentration of standard and dividing by absorbance of standard.

2.5.4 Quality control

A Randox normal quality control serum was assayed with all analyses to determine the precision.

2.5.5 Statistical Analysis

The biochemical data were subjected to statistical analysis using tools such as analysis of variance (ANOVA) and student's t-test using Statistical Package for Social Sciences (SPSS) version 21.0 for windows 8.1. Probability values less than 0.05 was taken to be significant.

3. Result

Table 1 shows the response of the rats during the toxicity study of petrol fumes in wistar rats. Group A presented no changes in physical and behavioral responses. Group B presented slight changes in physical and behavioral responses after 4 hours daily exposure for two weeks. Group C presented moderate physical and behavioral changes after 6 hours daily exposure for two weeks. Group D presented severe physical and behavioral changes observed after 8 hours of daily exposure. No death was recorded in any group for the time span of the toxicity study.

Table 1: Toxicity study of different durations of petrol fume

Toxicity study	Groups	Time (hrs.)	Action
Physical changes (weakness, abnormal movements, diarrhea)	A B C D	- 4 6 8	- - - - + - + + - + + +
Behavioral changes (aggressiveness, rotational movements, biting, hyperactivity)	A B C D	- 4 6 8	- - - - + - + - + + + - + + + +
Death	A B C D	- 4 6 8	- - - -

500ml of Petrol fumes were used but for different durations

Table 2 below shows the effect of different concentrations of petrol fumes on liver enzymes. Alkaline phosphatase (U/L) was 38.2 ± 0.92 , 47.4 ± 4.64 , 50.4 ± 6.04 , 62.0 ± 11.02 , 55.8 ± 1.85 , 54.8 ± 1.59 and 59.6 ± 3.06 at petrol concentrations (ppm) of 0.00, 16,737, 20,240, 23,077, 27,344, 30,920 and 34,458 respectively. Aspartate amino transferase (U/L) was 12.8 ± 1.83 , 14.6 ± 2.16 , 15.6 ± 2.16 ,

19.0 ± 2.35 , 20.2 ± 2.13 , 23.2 ± 3.35 and 25.8 ± 3.68 at petrol concentration (ppm) of 0.00, 16,737, 20,240, 23,077, 27,344, 30,920 and 34,458 respectively. Alanine amino transferase (U/L) was 13.2 ± 0.58 , 20.0 ± 1.41 , 24.2 ± 1.43 , 28.8 ± 2.42 , 32.2 ± 1.56 , 31.6 ± 2.79 and 34.8 ± 2.15 at gasoline concentration (ppm) of 0.00, 16,737, 20,240, 23,077, 27,344, 30,920 and 34,458 respectively.

Table 2: Effect of different concentrations of petrol fumes on Liver Parameters

Concentrations (ppm)	Alkaline Phosphatase (u/l)	Aspartate amino transferase (u/l)	Alanine amino transferase (u/l)
0.00	38.2 ± 0.92	12.8 ± 1.83	13.2 ± 0.58
16,737	47.4 ± 4.64	14.6 ± 2.16	20.0 ± 1.41
20,240	50.4 ± 6.04	15.6 ± 2.16	24.2 ± 1.43
23,077	62.0 ± 11.0	19.0 ± 2.35	28.8 ± 2.42
27,344	55.8 ± 1.85	20.2 ± 2.13	32.2 ± 1.56
30,920	54.8 ± 1.59	23.2 ± 3.35	31.6 ± 2.79
34,458	59.6 ± 3.06	25.8 ± 3.68	34.8 ± 2.15
F	2.335	3.298	16.622
P	0.059	0.014	0.000
Post Hoc			
0.00	16,737	0.677	1.000
	20,240	0.652	0.996
	23,077	0.584	0.593
	27,344	0.002	0.324
	30,920	0.001	0.319
	34,458	0.015	0.205
16,737	0.00	0.677	1.000
	20,240	1.000	1.000
	23,077	0.964	0.937
	27,344	0.803	0.727
	30,920	0.875	0.558
	34,458	0.537	0.349
20,240	0.00	0.652	0.996
	16,737	1.000	1.000
	23,077	0.997	0.991
	27,344	0.998	0.890
	30,920	1.000	0.693
	34,458	0.933	0.446
23,077	0.00	0.584	0.593
	16,737	0.964	0.937
	20,240	0.997	0.991
	27,344	1.000	1.000
	30,920	1.000	0.993
	34,458	1.000	0.867
27,344	0.00	0.002	0.324
	16,737	0.803	0.727
	20,240	0.998	0.890
	23,077	1.000	1.000
	30,920	1.000	1.000
	34,458	0.990	0.947
30,920	0.00	0.001	0.319
	16,737	0.875	0.558
	20,240	1.000	0.693
	23,077	1.000	0.993
	27,344	1.000	1.000
	34,458	0.924	1.000
34,458	0.00	0.015	0.205
	16,737	0.537	0.349
	20,240	0.933	0.446
	23,077	1.000	0.867
	27,344	0.990	0.947
	30,920	0.924	1.000

Alkaline Phosphate (U/L) was 38.2 ± 0.92 and 55.0 ± 2.31 in control groups and groups exposed to petrol fumes respectively. Aspartate amino transferase (U/L) was 12.8 ± 1.83 and 19.7 ± 1.24 in control groups and groups

exposed to petrol fumes respectively. Alanine amino transferase (U/L) was 13.2 ± 0.58 and 28.6 ± 1.20 in control groups and groups exposed to petrol fumes respectively as shown below in table 3.

Table 3: Effect of petrol fumes on liver enzymes Parameters

Parameter	Control	Petrol	t	P
Alkaline Phosphate (u/l)	38.2 ± 0.92	55.0 ± 2.31	8.561	0.006
Aspartate amino transferase(u/l)	12.8 ± 1.83	19.7 ± 1.24	4.806	0.036
Alanine amino transferase(u/l)	13.2 ± 0.58	28.6 ± 1.20	26.41	0.000

4. Discussion

This research evaluates the effect of petrol fumes on liver function parameters with emphasis on the duration of exposure. The result of the study showed LC_{50} of petrol to be 137,832 ppm. The studied concentration is a quarter of the LC_{50} . This concentration has been shown to be tolerable to rats [18].

The result of the study showed dose dependent increase in alkaline phosphatase (ALP), aspartate amino transferase (AST) and alanine amino transferase (ALT) activities in albino rats treated with petrol fumes compared to their respective controls. This is similar to the study by Adegoke *et al* [18]. This increase maybe due to the abnormal dynamic properties of cellular membranes following exposure to hydrocarbon fractions present in petrol[19]. This increase shows hepatic toxicity and possible damage caused by the exposure to the petrol fumes. Petrol is used for various reasons by humans at home, petrochemical and manufacturing industries. Exposure to petrol has been reported to have genotoxic, mutagenic, immunotoxic, carcinogenic and neurotoxic manifestation [20]. The ratio of AST/ALT is also an important index for the measurement of toxicity.

A significant elevation was seen in ALT level in all test groups indicating toxic influence of petroleum fumes on liver cells. The activity of AST was also significantly higher ($P < 0.05$) in subjects exposed occupationally to petroleum fumes in comparison to level observed in control group subjects. This damage is attributed to reactive free radical species generated from the metabolism of aromatic and aliphatic hydrocarbons present in petroleum fumes [21, 22]. The ratio of ALT/AST is also an important index for measurement of hepatotoxicity.

There was significant difference ($p < 0.05$) in aspartate amino transferase and alanine amino transferase activities in albino rats treated with petrol fumes. This is similar to study by Deepa *et al.*, [23]. Liver enzymes are markers of hepatocellular injury and their levels correlates with extent of tissue damage. Such elevation is indicative of liver injury, especially the rise in L-ALT level [24]. The level of serum ALT activity has been reported to be

increased as a result of liver injury in patients developing severe hepatotoxicity [25]. ALT might have leaked from damaged cells due to necrosis, indicating or gandys function [26]. Salie *et al.*,[27] discovered that the rise in the enzyme AST is usually accompanied by an elevation in the levels of ALT, which plays a vital role in the conversion of amino acids to ketoacids. This increase maybe due to the abnormal dynamic properties of cellular membranes following exposure to hydrocarbon fractions present in petrol. The changes in the cell membrane may have been as a result of the reactive free radical species from the metabolism of aliphatic and aromatic hydrocarbons which are the major constituents of petroleum products as well as other xenobiotics [21, 22].

However, the remarkable increase in the level of ALP may simply that damages occurred more in the liver cells of rats exposed to petrol fumes, since the activity of this enzyme in the serum is reported to be increased in the liver damage [28]. Alkaline phosphatase is involved in the transport of metabolites across the cell membranes, protein synthesis, glycogen metabolism, synthesis of certain enzymes and secretory activities. However, the increase in this enzyme activity may not be unconnected with a disturbance in the transport of metabolites or alteration in the synthesis of certain enzymes as in other hepatotoxic conditions [29].

This result also showed significant increase ($p < 0.05$) in alkaline phosphatase, aspartate amino transferase and alanine amino transferase of albino rats exposed to petrol fumes compared with their respective controls. This is similar to previous studies by Patrick-Iwuanyanwu *et al.*, [30] and Uboh *et al.*,[19]. These marker enzymes are cytoplasmic in origin and are released into the circulation after cellular damage [31]. This is as a result of damage to the liver architecture causing seepages of alkaline phosphatase, aspartate amino transferase and alanine amino transferase from the liver cells into the bloodstream. Elevated liver enzymes point towards hepatic injury. Alanine amino transferase (ALT) and Aspartate Amino Transferase (AST) are markers of hepatocellular injury whereas alkaline phosphatase is marker of

cholestasis [32]. Serum aminotransferases are the sensitive markers of acute hepatocellular injury. ALT is a cytosolic enzyme while AST is both cytosolic and mitochondrial. Normally, aminotransferases are present in serum at a low level. When necrosis or death of cells containing these enzymes occurs, aminotransferases are released into blood and their concentration in blood increases. The level correlates with extent of tissue damage [33]. Alkaline phosphates level is a marker of cholestasis.

5. Conclusion

The result of this study indicated that petrol fumes may impair liver functions as shown by changes in liver enzymes in rats is suggestive that petrol fumes can cause damage to the Liver.

References

- [1]. Kinawy, A.A. Impact of gasoline inhalation on some neurobehavioural characteristics of male rats. *BMC physiology* 2009; 9:21
- [2]. MacGregor, D. Relationship between seepage, tectonics and subsurface petroleum reserves. *Marine and Petroleum Geology* 1993; 10 (6), 606-619.
- [3]. Raabe, G. K, Wong, O. Leukemia mortality by cell type in petroleum workers with potential exposure to benzene. *Environmental Health Perspectives* 1996; 1381-1392
- [4]. Uboh, F.E., Akpanabiatu, M.I., Eteng, M.U., Ebong, P.E., & Umoh, I.B. Toxicological effects of exposure to gasoline vapours in male and female rats. *Internet Journal of Toxicology*, 2008; 4 (2)
- [5]. Wixstrom, R. N., Brown, S. L. Individual and population exposure to gasoline. *J Expo Anal Environmental Epidemiology* 1992; 2 (1), 23-78.
- [6]. Caprino, L. and Togna, G. I. Potential Health effect of gasoline and its constituents: A review of current literature on toxicological data. *Environmental Health Perspectives* 1998; 106 (3), 115-125.
- [7]. Periago, F. J. and Prado, C. Evolution of occupational exposure to environmental levels of aromatic hydrocarbons in service stations. *Annals of Occupation Hygiene*, 2005; 49,233-240
- [8]. Backer, L.C., Egeland G. M, Ashley D.L., Middaugh J. P. Exposure to regular gasoline and ethanol oxyfuel during refueling in Alaska. *Environmental Health Perspective* 1997; 105(8):850-855
- [9]. Egeghy P.P., Tornero -Velez R. & Rappaport S.M. Environmental and biological monitoring of benzene during self service automobile refueling. *Environmental Health Perspective* 2000; 108(12): 1195
- [10]. Pandey A. K, Bajpayee M, Parmar D., Kumar R., Rastogi S.K., Mathur N., Thorning P., de Matas M., Shao Q & Anderson D. Multipronged evaluation of genotoxicity in India petrol pump workers. *Environmental Molecular Mutagen* 2008; 49(9): 695-707;
- [11]. Howard, E.R. Benzene in gasoline. *American Industrial Hygiene Association Journal*, 1975; 36(5): 338-350
- [12]. Rekhadevi P., Rahman M. F., Mahboob M, & Grover P. Genotoxicity in filling station attendants exposed to petroleum hydrocarbons. *Annal of Occupational Hygiene* 2010; 54 (4): 944-954
- [13]. Guyton A.C and Hall J.E. Liver as an organ: in *Guyton and Hall Textbook of Medical Physiology*.12th edition Published by Saunders Elsevier, Philadelphia 2010; Pp837-840
- [14]. Dede E, B and Kaglo H.D. Aqua-toxicological effects of watersoluble fractions (WSF) of diesel fuel on *Oreochromis niloticus* fingerlings. *Journal of Applied Science and Environmental Management* 2001; 5:93-96
- [15]. Uboh, F.E., Akpanabiatu, M.I., Ndem, J.I., Alozie, Y. & Ebong, P.E. Comparative nephrotoxic effect associated with exposure to diesel and gasoline vapours in rats. *Journal of Toxicology and Environmental Health Science*, 2007; 1: 68-74.
- [16]. Reitman, S. and Frankel, S. A colorimetric method for determination of serum glutamate oxaloacetate and glutamic pyruvate transaminase. *American Journal of Clinical Pathology* 1957; 28, 56-58
- [17]. Babson, A. L., Greeley, S. J., Coleman, C. M. & Phillips, G. E. Estimation of Alkaline Phosphatase using Phenolphthalein Monophosphate. *Clinical Chemistry* 1996; 12, 482
- [18]. Adegoke, O. A., Braide, A. S., Bamigbowu, E. O. & Ayodele, B. O. M. Comparative effects of sugar and gari diets on hepatic enzymes in rats fed crude oil contaminated diet. *World Journal of Environmental pollution* 2011; 1 (2): 11-15
- [19]. Uboh, F.E., Akpanabiatu, M.I., Eyong, E. U., Ebong, P.E. & Eka, O. O. Evaluation of toxicological implication of inhalation exposure to kerosene fumes and petrol fumes in rats. *Journal of Toxicology and Environmental Health Science*, 2005; 49(3-4), 19-22
- [20]. Sturgill, M. G. & Lambert, G. H. Xenobiotics induced hepatotoxicity; mechanism of liver injury and method of monitoring hepatic functions. *Clinical chemistry*. 1997; 43, 1512-1526
- [21]. Leighton, F. A., Lee, Y. Z., Kahimtula, A. D., O'Brien, P. J. & Peakall, D. B. Biochemical and functional disturbances of RBC's of herring gull

ingesting Prudhoe Bay crude oil. *Toxicology Applied Pharmacology* 1985; 81, 25-31

[22]. Bondy, S. C., Lam, H. R., Ostergard, G., Guo, S. X. & Ladefoged, O. Changes in markers of oxidative status in brains, liver and kidney of young and aged rats following exposure to aromatic which spirit. *Archive of Toxicology* 1995; 69, 410-414

[23]. Deepa, S. N., Madhura, Y. B., Meena, J. A. & Anagha, M. G. Effect of long term exposure to petrol fumes on liver function. *International Journal of Advances in Health Sciences* 2016; 260-264

[24]. Lin, J. K. & Wang, C. J. Protection of crocin dyes on the acute hepatic damage induced by Aflatoxin B1 and dimethylnitrosamine in rats. *Carcinogens* 1986; 7, 595-599

[25]. Beckett, G. J., Foster, G. R., Hussey, A. D., Oliveira, D. B. G., Donovan, J. W., Prescott, L. F. & Proud foot, A. T.. Plasma glutathione S-transferase and F-protein are more sensitive than Alanine amino transferase as markers of paracetamol (acetaminophen). Induced liver damage. *Clinical Chemistry* 1989; 35, 2186-2189

[26]. McIntyre, N & Rosalki M. Biochemical investigation in the management of liver disease in: *Hepatobiliary Disease* ed., J Prieto, J Rodes and D. A Shafrits 1992; 39-71 Springer Verlag, Berlin.

[27]. Salie R., Tredeger J. & Williams R. Drugs and the liver part1 Testing liver function. *Biopharmaceutics and Drug Disposition* 1991; 12(4): 251-259

[28]. Halim, A. B., El-Ahmagy, O., Abdel-Galib, F., Darwish, A., Hassab-Allah, S. & Hafez, Y. Biochemical effect of antioxidants on lipids and liver function in experimentally- induced liver damage. *Annual Clinical Biochemistry*, 1997; 34, 655-663

[29]. Sharma, A., Mathur, R. & Shulda, S. Hepatoprotective action of a proprietary herbal preparation against carbon tetrachloride intoxication. *Indian drugs* 1995; 32, 120-124

[30]. Patrick-Iwuanyanwu, K. C., Onyemaenu, C. C., Wegua, M. D & Ayalogu, E. D. Hepatotoxic and nephrotoxic effects of kerosene and petrol contamination diets in wistar albino rats. *Research Journal of Environmental Toxicology* 2011; 5, 49-57.

[31]. Lin, S. C., Chung, T. C., Ueng, T. H., Linn, Y. H., Hsu, S. H., Chiang, C. L. & Lin. O. The hepatotoxicity in mice. *American Journal of Clinical Medicine* 2000; 28, 105-114

[32]. Vansudevan, D. M & Sreekumari, S. Liver and Gastric function tests in; *Textbook of biochemistry*. Jaypee brothers, New Delhi 2007; 491-497

[33]. Kawthalkar, S. M. Liver function tests in: *Essentials of Clinical Pathology*, Jaypee Brothers New Delhi, 2012;52-68