

Clinical Profile and Risk Factors Associated with Acute Myocardial Infarction

Durgesh Dashrath Mahajan¹, Rahul S Baghel² and Rashmi Nilesh Nagdeve^{*3}

¹Assistant Professor, ²Junior Resident, ³Associate Professor,

Department of Medicine, Shri Vasantrao Naik Government Medical College, Yavatmal, Maharashtra 445001

Abstract

Background: Acute myocardial infarction (AMI) is a significantly raising problem particularly in India in young as well as in elderly patients. This has aroused considerable interest in recent years and being recognized with increasing frequency. The present research was undertaken to study the risk factors and clinical profile of patients with acute myocardial infarction.

Method: The study included 90 consecutive patients with AMI admitted in the ICCU of a tertiary care center. Demographic features, cardiovascular risk factors, clinical presentation, Electrocardiogram (ECG) findings, regions of infarction were studied and documented.

Results: Out of 90 patients, 49 (54.44%) were males and 41(45.55%) were females. The mean age of patients was 59.25 ± 13 years, with a maximum number of patients (32; 35.55%) belong to the age of 61–70 years. All the patients (90; 100%) presented with chest pain followed by sweating (36.66%) and vomiting (14.44%). The maximum numbers of patients (84.44%) were in the Kilips Class- I. Hypertension (46.66%) was the major risk factor for MI followed by alcoholism (35.55%) and smoking (33.33%). Inferior wall myocardial infarction was the commonest type seen on ECG (41, 45.55%).

Conclusion: Elderly patients were most commonly affected with male predominance. Chest pain was the most common presenting symptom. Most common risk factor contributing to AMI was hypertension.

Keywords: Acute myocardial infarction, Clinical profile, Risk factor, Electrocardiogram, Chest pain, Kilips Class.

*Correspondence Info:

Dr. Rashmi Nilesh Nagdeve,
Associate Professor,
Department of Medicine,
Shri. Vasantrao Naik Govt Medical College
Yavatmal, Maharashtra 445001

*Article History:

Received: 05/07/2019
Revised: 29/07/2019
Accepted: 29/07/2019
DOI: <https://doi.org/10.7439/ijbar.v10i7.5234>

QR Code

How to cite: Mahajan D. D, Baghel R. S and Nagdeve R. N. Clinical Profile and Risk Factors Associated with Acute Myocardial Infarction. *International Journal of Biomedical and Advance Research* 2019; 10(7): e5234. Doi: 10.7439/ijbar.v10i7.5234 Available from: <https://ssjournals.com/index.php/ijbar/article/view/5234>

Copyright (c) 2019 International Journal of Biomedical and Advance Research. This work is licensed under a [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/)

1. Introduction

Cardiovascular diseases (CVD) have emerged as a major health burden in developing countries like India [1]. It is predicted that more than half the worldwide CVD risk burden will be borne by the Indian subcontinent in the next decade according to recent epidemiological studies [2, 3]. However, the CVD are the number one cause of death globally, majority of the deaths due to CVD are due to coronary heart disease [4, 5]. Myocardial infarction (MI) is one of the five main manifestations of coronary heart disease, namely stable angina pectoris, unstable angina pectoris, MI, heart failure and sudden death [6].

Acute myocardial infarction is an event of myocardial necrosis caused by an unstable ischemic syndrome [7]. It is an important disease entity in developed nations and recently in developing nations [8]. It usually affects the middle and older age groups. It is an uncommon disease in young adults and its incidence varies between 2%-10% according to different survey [9]. However the growth of cardiology as a specialty may be explained by a study of the attention given to acute myocardial infarction [10]. In practice, the disorder is diagnosed and assessed on the basis of clinical evaluation, the electrocardiogram

(ECG), biochemical testing, invasive and noninvasive imaging, and pathological evaluation [11]. New cases of AMI tell us about the prevalence of risk factors in the community which lead to increased incidence of AMI. On the other hand, the occurrence of repeated attacks of AMI tells us about the quality of care received by the patient during the attack of AMI and its subsequent treatment [12].

Although population above the age of 65years can be estimated to be more than 90%and has more than 50% of the patients with AMI. Various risk factors of AMI are hypertension, smoking, diabetes, obesity etc. If the patient develops any other co-morbidity, then it affects the treatment of the AMI [13]. Co-morbidities in a patient with already known AMI affect the outcome in such patients. Study of risk factors and clinical profile of the patient is important [14]. Hence present study was carried out to study risk factors and clinical profile of patients with acute myocardial infarction

2. Materials and Methods

The present study consisted of 90 consecutive patients of Acute Myocardial Infarction (AMI) admitted to ICCU of a tertiary health care center. Only patients who satisfied World Health Organization (WHO) definition [15] for the diagnosis of AMI were selected for the study. The study was approved by the Institutional Ethics Committee and written informed consent was obtained from the participants. Patients with stable angina, those who are below 20 years and patients who are unwilling to participate in the study were excluded.

Diagnosis was based in presence of at least two of the following three criteria:

- 1) A clinical history of ischemic type chest discomfort.
- 2) Changes in serially obtained electrocardiographic tracings.
- 3) A rise and fall of serum cardiac markers.

After a detailed history and thorough clinical examination, routine investigations were done including ECG, serum cardiac markers, RBS, Lipid profile, chest x-ray and 2D-echo to confirm the diagnosis. Also complete general and systemic physical examination was done in all patients and severity of AMI was classified according to Killip's classification [16]. Coronary angiography was performed in all patients to assess the number and type of vessels which were involved. The special attention was paid to the presence of risk factors. The risk factors which were studied were hypertension, smoking habits, obesity ($BMI > 30 \text{ kg/m}^2$), family history of ischemic heart disease, smoking and alcohol consumption.

Data were expressed in frequency, percentage, meanand standard deviation as applicable. Data were analyzed byusing Microsoft excel.

3. Observations and Results

A total of 90 patients diagnosed with myocardial infarction were studied regardless of the therapeutic intervention they received. Among 90 patients, 49 (54.44%) were males and 41(45.55%) were females. The mean age of patients was 59.25 ± 13 years, with a maximum number of patients (32; 35.55%) belong to the age of 61–70 years, (Table 1).

Table 1: Demographic profile of the patients

Age groups (Years)	No. of Patients	Percentage
21-30	03	3.33
31-40	08	8.88
41-50	12	13.33
51-60	19	21.11
61-70	32	35.55
71-80	14	15.55
>81	02	2.22

The distribution of patients according to occupation was shown in table 2. The maximum numbers of patients were housewife (28.88%) followed by laborer (24.44%) and former (18.88%).

Table 2: Distribution of patients according to Occupation

Occupation	No. of Patients	Percentage
Housewife	26	28.88
Laborer	22	24.44
Former	17	18.88
Vendor	08	8.88
Clerk	05	5.55
Maid	04	4.44
Tailor	04	4.44
Driver	03	3.33
Student	01	1.11

The commonest presenting symptom was chest pain (100%), followed by sweating (36.66%) and vomiting (14.44%). Other presenting symptoms were shown in table 3. All the patients had chest pain at presentation. The duration of chest pain before admission to ICCU varied from less than one hour to >12 hours. 44 (48.88%) of the 90 patients were admitted to the hospital within 6 hours of onset of chest pain (Table 3). Maximum patients (84.44%) belong to Killip's class I followed by 6 patients in Killip's class II (6.66%). The most grievous Killip's class IV was seen in 4patients (4.44%), (Table 3).

Table 3: Showing symptoms at the time of admission, duration of chest pain before admission and Killips' classification

Symptoms	No. of Patients	Percentage
Chest Pain	90	100
Sweating	33	36.66
Vomiting	13	14.44
Breathlessness	10	11.11
Palpitation	11	12.22
Duration (hours)	No. of patients	Percentage
0-6	44	48.88
7-12	25	27.77
>12	19	21.11
KILIPS CLASS	No. of patients	Percentage
Class I	76	84.44
Class II	6	6.66
Class III	4	4.44
Class IV	4	4.44

Hypertension (46.66%) was the major risk factor for MI followed by alcoholism (35.55%) and smoking (33.33%), (Table 4).

Table 4: Distribution of selected risk factors

Risk Factors	No. of Patients	Percentage
History of hypertension	42	46.66
Alcoholic	32	35.55
History of smoking	30	33.33
Obesity	17	18.88
History of IHD	06	6.66

The most common MI in the present study was inferior wall MI (45.55%). Other groups were anterolateral wall myocardial infarction (ALWMI) (17.77%) and anterior wall myocardial infarction (AWMI) in 16.66% of the patients, (Table 5).

Table 5: Type of Myocardial infarction [ECG based]

Type of MI	No. of patients	Percentage
IWMI	41	45.55
ALWMI	16	17.77
AWMI	15	16.66
ASWMI	11	12.22
IPWMI	7	7.77

4. Discussion

Coronary heart disease is the leading cause of death among elderly patients [17]. Previous studies have found that in patients with acute myocardial infarction (AMI), old age was associated with a higher prevalence of comorbid conditions, atypical presentation, non-diagnostic electrocardiogram (ECG), complications, and mortality [18]. In present study AMI is more common in the elderly patients of age between 61-70 years and less common in the younger age group (21-30 years), there is striking increase in incidence of disease as age advances. It confirms that age

is non-modifiable, most powerful and independent risk factor for AMI. The oldest patient in this study was of 83 years of age and the youngest patient was of 24 years age. The average age of the patient was 59.25 ± 13 years. This is consistent with findings of other authors [19-23]. The rate of AMI was higher in males than in females (54.44% versus 45.55%) which are comparable with the study done by Adhikari *et al* [20] and Singh *et al* [24]. Present study demonstrated that with increasing age the number of females with MI also increased. This may be due to loss of protective effect of estrogen in post-menopausal women. The vasodilatory action of estrogen may be responsible for this protective effect [25].

Earlier studies [26, 27] found that the chest pain is the most common presentation of AMI in elderly patients, they are also known to present with atypical symptoms such as giddiness, dyspnea, vomiting, sweating, and epigastric pain in the absence of chest pain. Some investigators have found that up to 30% of patients with AMI may not experience any symptom, [28] and many experience no pain [29]. These patients often complain of shortness of breath, extreme fatigue, nausea, or fainting. The current study reported chest pain as a predominant symptom (100%) as observed in the previous studies [19-23]. Maximum patients (76.66%) presented to the hospital within 12 h of onset of symptoms. This accounted for one of the major reasons for not thrombolysing the patients. Similar finding was noted in other studies [19, 27]. Killip's classification indicates the clinical severity of AMI at the time of presentation. Maximum patients (84.44%) belong to Killip's class I followed by in Killip's class II (6.66%). The findings of present study co-relate with that of GISSI-2 study [18] and Seetharama *et al* study [22].

Among the risk factors, commonest risk factor was hypertension presented in 46.66% of the patients. This finding co-relates with that of Adhikari *et al* [20] who have reported hypertension as a risk factor in 43.18% of patients. Also, hypertension was significantly associated with MI in different studies in South Asia [24, 30]. Smoking (33.33%) was the less common risk factor in current study, this finding was like the previous studies in which smoking was a less common risk factor in the elderly population. In one of the study done before, hypertension was commonly seen in elderly patients (39%). Smoking was seen in only 17.1% of the patients [31].

The most common myocardial infarction was inferior wall MI (45.55%), which is closely similar to the study done by Chavan *et al* [21]. Likewise the inferior wall was the predominant site of infarction in other study in Pakistan [30]. Anterior wall myocardial infarction observed in only 16.66% of the patients. Patients with anterior wall MI have worse prognosis with increased incidence of

complications and deaths than inferior wall MI [32, 33]. Although the follow up data were not available, the lesser incidence of anterior wall MI may contribute to decreasing mortality burden from MI in present setting.

Small sample size and the data collected from single tertiary care centre constitute the limitations of the present study.

5. Conclusion

Elderly patients were most commonly affected with male predominance. Chest pain was the most common presenting symptom. Most common risk factor contributing to AMI was hypertension. Inferior wall myocardial infarction was the common lesion seen in the present study. Most of the patients were admitted to the hospital within 6 hours of onset of symptom. The maximum number of patients presented with no clinical signs of heart failure i.e. in Kilips Class- I.

The present study suggested that there is need for early detection of risk factor to prevent the progression of coronary heart disease, need for creating awareness in the community regarding risk factors, symptoms and signs of acute myocardial infarction so that early referral can be done to coronary care unit to prevent morbidity and mortality in the community.

References

- Reddy KS. Cardiovascular disease in non-western countries. *New Eng J Med.* 2004; 350(24): 2438-40.
- Gupta R, Joshi P, Mohan V et al. Epidemiological and causation of coronary heart disease & stroke in India. *Heart* 2008; 94: 16-26.
- The World Health Report 1999: The double burden: Emerging epidemics and persistent problems. WHO 1999.
- World Health Organization. Fact sheet: Cardiovascular diseases (CVDs). 2017. Available at <http://www.who.int/mediacentre/factsheets/fs317/en/> Accessed 12 November 2017.
- Finegold JA, Asaria P, Francis DP. Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. *Int J Cardiol.* 2013; 168(2):934-45.
- Mendis S, Thygesen K, Kuulasmaa K et al. World Health Organization definition of myocardial infarction: 2008-09 revision. *Int J Epidemiol.* 2011; 40(1):139-46.
- Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. *J Am Coll Cardiol* 2012; 60:1581-98.
- Yusuf S, Vaz M, Pais P. Tackling the challenge of disease burden in developing nations. *Am Heart J.* 2004; 148:1.
- Doughty M, Mehta R, Bruckman D, et al. Acute Myocardial infarction in the young-The University of Michigan experience. *Am Heart J.* 2002; 143:56-62.
- Andrew G. Bostrom, et al: Elevated Lp (a) coronary heart disease in men aged 55years and younger. *JAMA:* 276:544-548; 1990.
- Anderson JL, and Morrow DA. Acute Myocardial Infarction. *The new England Journal of Medicine* 2017; 376:2053-64.
- Kangovi S, Grande D. Hospital readmissions-not just a measure of quality. *JAMA.* 2011; 306(16):1796-7.
- Krumholz HM et al. Is there evidence of implicit exclusion criteria for elderly subjects in randomized trials? Evidence from the GUSTO-1 study. *Am Heart J.* 2003; 146(5):839-47.
- Nicolau JC et al. The role of gender in the long-term prognosis of patients with myocardial infarction submitted to fibrinolytic treatment. *Ann Epidemiol.* 2004; 14(1):17-23.
- Tunstall-Pedoe H et al. Myocardial Infarction and coronary deaths in the World Health Organization MONICA project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. *Circulation.* 1994; 90:583-612.
- Gambhir JK, Kaur H, Gambhir DS, Prabhu KM. Lipoprotein(a)s as an independent risk factor for coronary artery disease in patients below 40 years of age. *Indian Heart Journal:* 2000; 52(4):411-5.
- Paul SD, O'Gara PT, Mahjoub ZA, et al. Geriatric patients with acute myocardial infarction: Cardiac risk factor profiles, presentation, thrombolysis, coronary intervention and prognosis. *Am Heart J* 1996; 131:710-5.
- Maggioni AP et al. Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The Investigators of the Gruppo Italiano per lo Studio della Sopravvivenzanell' Infarto Miocardico (GISSI-2). *N Engl J Med* 1993; 329:1442-8.
- Savith A. Clinical Profile of Acute Myocardial Infarction in Elderly Patients: A Cross Sectional Study. *Int J Sci Stud* 2015; 3(6):65-68.
- Adhikari G, Baral D. Clinical profile of patients presenting with acute myocardial infarction. *Int J Adv Med* 2018; 5:228-33.
- Chavan MS, Bhaktavatsalam M. A study of risk factors and clinical profile of patients with acute myocardial infarction. *Int J Adv Med* 2018; 5:96-9.

[22]. Seetharama N, Mahalingappa R, Ranjith Kumar GK et al. Clinical profile of acute myocardial infarction patients: a study in tertiary care centre. *Int J Res Med Sci* 2015; 3:412-9.

[23]. Sahni M, Kumar R, Thakur S et al. Clinical profile, risk factors and short term outcome of acute myocardial infarction in females: A hospital based study. *Heart India* 2013; 1:73-7.

[24]. Singh PS, Singh G, Singh SK. Clinical profile and risk factors in acute coronary syndrome. *J Ind Acad Clin Med*. 2013; 14(2):130-2.

[25]. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. *New Eng J Med*. 1999; 340(23):1801-11.

[26]. Bayer AJ, Chadha JS, Farag RR, Pathy MS. Changing presentation of myocardial infarction with increasing old age. *J Am Geriatr Soc* 1986; 34:263-6.

[27]. Tresch DD, Brady WJ, Aufderheide TP, Lawrence SW, Williams KJ. Comparison of elderly and younger patients with out-of-hospital chest pain. Clinical characteristics, acute myocardial infarction, therapy, and outcomes. *Arch Intern Med* 1996; 156:1089-93.

[28]. Kannel WB, Abbott RD. Incidence and prognosis of unrecognized myocardial infarction. An update on the Framingham study. *N Engl J Med* 1984; 311:1144-7.

[29]. Umachandran V, Ranjadayalan K, Ambepityia G, Marchant B, Kopelman PG, Timmis AD. The perception of angina in diabetes: Relation to somatic pain threshold and autonomic function. *Am Heart J* 1991; 121:1649-54.

[30]. Hafeez S, Javed A, Kayani AM. Clinical profile of patients presenting with acute ST elevation myocardial infarction. *J Pak Med Assoc*. 2010; 60(3):190-3.

[31]. Holay MP, Janbandhu A, Javahirani A, Pandharipande MS, Suryawanshi SD. Clinical profile of acute myocardial infarction in elderly (prospective study). *J Assoc Physicians India* 2007; 55:188-92.

[32]. Kennedy HL, Goldberg RJ, Szklo M, Tonascia JA. The prognosis of anterior myocardial infarction revisited: a community-wide study. *Clin Cardiol*. 1979; 2(6): 455-60.

[33]. Stone PH, Raabe DS, Jaffe AS, Gustafson N, Muller JE, Turi ZG, et al. Prognostic significance of location and type of myocardial infarction: independent adverse outcome associated with anterior location. *J Am Coll Cardiol*. 1988; 11(3):453-6.