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Abstract 
Many mathematical physics models are contributed to give rise to of nonlinear integral equations. In 

this paper, we study the performance of two recently developed modifications of well known so called 

Adomian’s decomposition method applied using Laplace transform to nonlinear Volterra integral equations. 

Three nonlinear Volterra integral equations are solved analytically by implementing these modifications. From 

the obtained results, it may be concluded that that the modified techniques are reliable, efficient and easy to use 

through recursive relations that involve simple integrals. Moreover, these particular examples show the 

reliability and the performance of proposed modifications. 
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1. Introduction 

Analytical study of integral equations play an 

important role in many branches of linear and 

nonlinear functional analysis and their applications in 

the theory of elasticity, engineering, mathematical 

physics, potential theory, electrostatics and radioactive 

heat transfer problems. The nonlinear Volterra integral 

equations arise from various natural physical and 

biological models such as the population dynamics, 

spread of epidemics, and semi-conductor devices. The 

essential features of these models are of wide 

applicable [1]. Vito Volterra thoroughly investigated 

the integral equation in the case when the kernel of 

integral is linear function. He also described a wide 

range of applications of integral equations with 

variable boundary, which is one of the most important 

factors in the development of the theory of integral 

equations.  In recent years, many works have been 

focusing on the developing and applying of advanced 

and efficient methods for integral equations such as 

implicitly linear collocation methods [2], product 

integration method [3], Hermite-type collocation 

method [4] and analytical techniques such as 

Adomian’s decomposition method [5,6], homotopy 

analysis method [7-9], homotopy perturbation method 

[10], the Exp-function method [11], variational 

iteration method [12] and the Adomian’s 

decomposition method [13]. In this work, we 

investigate the performance of two modification of 

Adomian’s decomposition method applied to non-

linear Volterra integral equations of the second kind. 

This type of integral equations has the following form 



x
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Eq. (1) represents a nonlinear Volterra 

integral equation of second kind with unknown 

function )(xu and )(uF is a non-linear function of )(xu , 

and we assumed that, the kernel ),( txk and the 

function )(xf are analytical functions on 2R and R , 

respectively.  

 

2. Analysis of Decomposition Method 

2.1 First Modification 

In the first modified technique, we assume that the 

function can be split as follows 

)()()( 21 xfxfxf                                               (2) 

Applying Laplace transform to Eq. (1), we 

have the recursive relation 
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Implementation the inverse Laplace 

transforms to (3) will produce the required solution. 
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2.2 Second Modification 

The main idea of the second modified 

technique is replacing the non-homogeneous function

)(xf by a series of infinite components. Ref. [14] 

expresses )(xf in term of the Taylor series and 

introduces the recursive formula, after applying the 

Laplace transform 
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In Eq. (5), ),...,1,0();( nisfi  represents the 

Taylor series components of )(sf
 
and the solution can 

be expressed in an infinite series form as Eq. (4). 

 

3. Numerical Applications 

Example 3.1 Consider the following non-linear 

Volterra’s integral equation 
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First Modification 

Splitting )(xf  into two parts 
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Using the recursion relation (3), we get 
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Taking Laplace inverse transform on both 

sides of the above equation 

xxu sin)(                                          (10) 

Second Modification 

To apply the second modified technique, let 

us first expand the function )(xf  in terms of Taylor 

series expansion. 
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The recursive Formula (5) gives 
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Taking Laplace inverse transform on both 

sides of the above equation 
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Example 3.2 Consider the non-linear Volterra’s 

integral equation 
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First Modification 

Split )(xf  into two parts 
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Using the recursion relation (3), we get 
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Taking Laplace inverse transform on both 

sides of the above equation 

xxu sec)(                                                           (18) 

Second Modification 

To apply the second modified technique, let 

us first expand the function )(xf  in terms of Taylor 

series expansion. 
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According to recursive formula (5), we have 

5

0

213

4

4

0

2

12

3

3

3

0

1

2

2

0

2

1

24

)!4(5
}))()(2)()(2({}

24

5
{)}({

0}))()()(2({}
3

1
{)}({

2

!2
})()(2{}

2

1
{)}({

0})({}{)}({

1
}1{)}({

s
dttutututuLxLxuL

dttututuLxLxuL

s
dttutuLxLxuL

dttuLxLxuL

s
LxuL

x

o

x

o

x

o

x

o

o



















                                                                                                                                                                                                                  



(20) 





0 53

...)
!4

(
24

5
0

2

!2
0

1
)()(

sss
sUsU n

     (21) 

Taking Laplace inverse transform on both 

sides of the above equation 
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Example 3.3 Consider the non-linear Volterra’s 

integral equation 
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First Modification 

Split )(xf  into two parts 
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Using the modified recursion relation (3), we get 
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This implies that 
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Second Modification 

To apply the second modified technique, let 

us first expand the function )(xf  in terms of Taylor 

series expansion. 
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According to recursive formula (5), we have 
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Taking Laplace inverse transform on both 

sides of the above equation 
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4. Conclusions 

This paper presents the application of two 

modification of decomposition method for solving 

nonlinear Volterra’s integral equations of 2
nd

 kind.  

Exact solutions of the three tested problems, arising in 

many physical and biological models are calculated by 

using modifications. We note that 2
nd

 modification 

minimizes the size of the calculations which produced 

in the first modification. In addition, it is clear that the 

reduction in each iteration will relieve the construction 

of Adomian’s polynomials for the non-linear term. 
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